Spaces:
Running
Running
File size: 2,650 Bytes
f3075f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
# App title
st.title("π Anomaly Detection Tool")
# π― Streamlit Tabs
tab1, tab2, tab3 = st.tabs(["π About", "π Dataset Overview", "π¨ Anomaly Detection"])
# About Tab
with tab1:
st.write("""
This app detects anomalies in time-series data using the Isolation Forest algorithm.
Users can visualize detected anomalies.
### How It Works:
- **Step 1**: Load a dataset (CSV format from the Numenta Anomaly Benchmark `realKnownCause` dataset)
- **Step 2**: Standardize numerical values for better anomaly detection
- **Step 3**: Apply **Isolation Forest** to identify outliers
- **Step 4**: Visualize the detected anomalies in a time-series plot
""")
# Load dataset
file_path = "ambient_temperature_system_failure.csv"
df = pd.read_csv(file_path)
# Dataset Overview Tab
with tab2:
st.write("### Dataset Overview")
st.write(df.head())
# Convert timestamp column to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce')
df = df.dropna(subset=['timestamp'])
df.set_index('timestamp', inplace=True)
st.write("### Processed Dataset")
st.write(df.head())
# Anomaly Detection Tab
with tab3:
st.write("### Detect Anomalies in the Data")
# Standardize the data
scaler = StandardScaler()
df['scaled_value'] = scaler.fit_transform(df[['value']])
# Apply Isolation Forest
contamination_level = st.slider("Select Contamination Level", 0.01, 0.1, 0.05, 0.01)
model = IsolationForest(contamination=contamination_level, random_state=42)
df['anomaly'] = model.fit_predict(df[['scaled_value']])
df['anomaly'] = df['anomaly'].map({1: 0, -1: 1}) # Convert to binary (1: anomaly, 0: normal)
# Allow user to set anomaly score threshold
threshold = st.slider("Set Anomaly Score Threshold", -1.0, 1.0, 0.0, 0.01)
df["anomaly_score"] = model.decision_function(df[["scaled_value"]])
df["anomaly"] = df["anomaly_score"] < threshold
# Plot results
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(df.index, df['value'], label='Value', color='blue')
ax.scatter(df.index[df['anomaly'] == 1], df['value'][df['anomaly'] == 1], color='red', label='Anomaly', marker='o')
ax.set_xlabel('Timestamp')
ax.set_ylabel('Value')
ax.set_title('Anomaly Detection in Time-Series Data')
ax.legend()
st.pyplot(fig) |