Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# from huggingface_hub import InferenceClient | |
# from transformers import pipeline | |
# modelName = "chenluuli/test-text-vis" | |
# pipeline = pipeline(task="image-classification", model="chenluuli/test-text-vis") | |
# def predict(input_img): | |
# predictions = pipeline(input_img) | |
# return input_img, {p["label"]: p["score"] for p in predictions} | |
# gradio_app = gr.Interface( | |
# predict, | |
# inputs="text", | |
# outputs="text", | |
# title="demo", | |
# ) | |
# if __name__ == "__main__": | |
# gradio_app.launch() | |
token = "" # todo 支持外部传入 | |
def initClient(): | |
# Initialize client for a specific model | |
client = InferenceClient( | |
model="prompthero/openjourney-v4", | |
#base_url=..., | |
#api_key=..., | |
) | |
return client | |
def greet(input): | |
modelName = "chenluuli/test-text-vis" | |
text2text_generator = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B-Instruct", torch_dtype="auto", device_map="auto") | |
prompt = "##你是一个可视化专家,通过我提供的信息,推荐合理的图表配置##请根据这些信息,返回合理的图表类型 >>我输入的数据如下:" | |
messages = [{ | |
"role": "user", | |
"content": prompt+input, | |
}] | |
response = text2text_generator( | |
messages, | |
max_length=512 | |
) | |
print(response, response[0]['generated_text']) | |
return response[0]['generated_text'] | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
demo.launch() | |
# title = "demo" | |
# description = "Gradio Demo for custom demo" | |
# # examples = [ | |
# # ["The tower is 324 metres (1,063 ft) tall,"], | |
# # ["The Moon's orbit around Earth has"], | |
# # ["The smooth Borealis basin in the Northern Hemisphere covers 40%"], | |
# # ] | |
# gr.Interface.load( | |
# "huggingface/chenluuli/test-text-vis", | |
# inputs=gr.Textbox(lines=5, label="Input Text"), | |
# outputs="text", | |
# #title=title, | |
# #description=description, | |
# # article=article, | |
# # examples=examples, | |
# #enable_queue=True, | |
# ).launch() | |