Spaces:
Sleeping
Sleeping
File size: 11,793 Bytes
b2989a2 1713e65 b2989a2 1713e65 b2989a2 e54d7aa b2989a2 1713e65 b2989a2 1713e65 b2989a2 e54d7aa b2989a2 e54d7aa b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 e54d7aa b2989a2 e54d7aa b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 83358ff b2989a2 1713e65 b2989a2 1713e65 b2989a2 1713e65 b2989a2 a874f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import subprocess
import sys
import os
import gradio as gr
def install_package(package):
"""安装Python包"""
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
return True
except subprocess.CalledProcessError:
return False
def check_and_install_dependencies():
"""检查并安装依赖"""
print("🔍 检查依赖库...")
# 检查transformers
try:
import transformers
print("✅ transformers 已安装")
return True
except ImportError:
print("❌ transformers 未安装,尝试安装...")
# 尝试安装transformers
packages_to_install = [
"transformers==4.35.2",
"accelerate==0.24.1",
"bitsandbytes==0.41.3"
]
for package in packages_to_install:
print(f"📦 安装 {package}...")
if install_package(package):
print(f"✅ {package} 安装成功")
else:
print(f"❌ {package} 安装失败")
# 再次检查
try:
import transformers
print("✅ transformers 现已可用")
return True
except ImportError:
print("❌ transformers 安装后仍不可用")
return False
# 检查并安装依赖
dependencies_ok = check_and_install_dependencies()
if dependencies_ok:
# 如果依赖OK,导入所需库
try:
import torch
from transformers import AutoTokenizer, AutoModel, AutoProcessor, Blip2ForConditionalGeneration
from PIL import Image
print("✅ 所有库导入成功")
# 在这里放置你的完整应用代码
# HF Spaces 环境检测
IS_SPACES = os.environ.get("SPACE_ID") is not None
print(f"Running on HF Spaces: {IS_SPACES}")
# 设备配置
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# 全局变量
tokenizer = None
model = None
processor = None
blip_model = None
def load_models():
"""加载模型"""
global tokenizer, model, processor, blip_model
try:
print("🔄 正在加载模型...")
# 加载图像理解模型
vision_model = "Salesforce/blip2-opt-2.7b"
print(f"📷 加载图像模型: {vision_model}")
processor = AutoProcessor.from_pretrained(vision_model)
blip_model = Blip2ForConditionalGeneration.from_pretrained(
vision_model,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
load_in_8bit=device == "cuda"
)
if device == "cpu":
blip_model = blip_model.to("cpu")
print("✅ 图像模型加载完成")
# 加载对话模型
model_name = "THUDM/chatglm2-6b-int4"
print(f"💬 加载对话模型: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModel.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
low_cpu_mem_usage=True
)
if device == "cuda":
model = model.half().cuda()
model.eval()
print("✅ 对话模型加载完成")
return True
except Exception as e:
print(f"❌ 模型加载失败: {str(e)}")
return False
def describe_image(image):
"""生成图像描述"""
if blip_model is None or processor is None:
return "图像模型未加载"
try:
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.size[0] > 512 or image.size[1] > 512:
image.thumbnail((512, 512), Image.Resampling.LANCZOS)
inputs = processor(image, return_tensors="pt")
if device == "cuda":
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = blip_model.generate(
**inputs,
max_new_tokens=30,
num_beams=2,
do_sample=False
)
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return caption
except Exception as e:
print(f"图像描述错误: {str(e)}")
return f"图像描述生成失败"
def on_image_upload(image):
"""处理图像上传"""
if image is None:
return [], []
try:
print("🖼️ 处理上传的图像...")
history = []
chat_history = []
caption = describe_image(image)
print(f"图像描述: {caption}")
prompt = f"这是一幅艺术作品,描述为: {caption}。请用中文对这件艺术作品进行介绍和分析。"
if model is not None and tokenizer is not None:
try:
with torch.no_grad():
response, history = model.chat(tokenizer, prompt, history=history)
chat_history.append([image, response])
print("✅ 初始分析完成")
except Exception as e:
print(f"对话生成错误: {str(e)}")
chat_history.append([image, f"很抱歉,分析过程中出现了错误。请重新尝试。"])
else:
chat_history.append([image, "对话模型未正确加载,请刷新页面重试。"])
return chat_history, history
except Exception as e:
print(f"图像处理错误: {str(e)}")
return [[None, "图像处理失败,请重新上传。"]], []
def on_user_message(user_message, chat_history, history):
"""处理用户消息"""
if not user_message or not user_message.strip():
yield chat_history or [], history or []
return
if model is None or tokenizer is None:
chat_history = chat_history or []
chat_history.append([user_message, "对话模型未加载,请刷新页面。"])
yield chat_history, history or []
return
try:
chat_history = chat_history or []
history = history or []
chat_history.append([user_message, ""])
for output, new_history in model.stream_chat(
tokenizer,
user_message,
history,
max_length=2048,
temperature=0.7,
top_p=0.8
):
chat_history[-1][1] = output
yield chat_history, new_history
except Exception as e:
print(f"对话错误: {str(e)}")
if chat_history:
chat_history[-1][1] = "回复生成失败,请重试。"
yield chat_history, history or []
def clear_chat():
"""清空对话"""
return [], []
# 创建界面
with gr.Blocks(title="AI艺术品讲解智能体") as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎨 AI 艺术品讲解智能体</h1>
<p>上传艺术品图像,获得专业的艺术分析和解读</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="📤 上传艺术品图像",
type="pil",
height=350
)
clear_btn = gr.Button("🗑️ 清空对话", variant="secondary")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="🤖 AI 分析师",
height=500,
show_label=True
)
user_input = gr.Textbox(
label="💬 继续提问",
placeholder="例如:这幅作品使用了什么绘画技法?创作背景如何?",
lines=2
)
# 状态管理
state = gr.State([])
# 事件绑定
image_input.upload(
fn=on_image_upload,
inputs=image_input,
outputs=[chatbot, state],
show_progress=True
)
user_input.submit(
fn=on_user_message,
inputs=[user_input, chatbot, state],
outputs=[chatbot, state],
show_progress=True
)
user_input.submit(lambda: "", inputs=[], outputs=[user_input])
clear_btn.click(fn=clear_chat, inputs=[], outputs=[chatbot, state])
# 启动应用
print("🚀 启动应用...")
if load_models():
print("✅ 启动成功")
demo.queue(max_size=20).launch()
else:
print("❌ 模型加载失败,启动简化版本")
with gr.Blocks() as simple_demo:
gr.HTML("<h2>模型加载失败</h2><p>请等待依赖安装完成后重试</p>")
simple_demo.launch()
except Exception as e:
print(f"❌ 导入失败: {str(e)}")
# 创建错误页面
with gr.Blocks() as error_demo:
gr.HTML(f"""
<div style="text-align: center; padding: 50px;">
<h2>❌ 库导入失败</h2>
<p>错误: {str(e)}</p>
<p>正在尝试自动修复...</p>
</div>
""")
error_demo.launch()
else:
# 依赖安装失败,显示错误页面
with gr.Blocks() as error_demo:
gr.HTML("""
<div style="text-align: center; padding: 50px;">
<h2>❌ 依赖安装失败</h2>
<p>transformers 库无法安装</p>
<p>请尝试以下解决方案:</p>
<ol style="text-align: left; display: inline-block;">
<li>检查 requirements.txt 文件是否存在</li>
<li>在 Settings 中执行 Factory reboot</li>
<li>等待 HF Spaces 重新构建环境</li>
</ol>
</div>
""")
error_demo.launch()
|