File size: 2,018 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training the distilled model.
"""
import argparse
import logging
import pickle
from collections import Counter


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)"
    )
    parser.add_argument(
        "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset."
    )
    parser.add_argument(
        "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file."
    )
    parser.add_argument("--vocab_size", default=30522, type=int)
    args = parser.parse_args()

    logger.info(f"Loading data from {args.data_file}")
    with open(args.data_file, "rb") as fp:
        data = pickle.load(fp)

    logger.info("Counting occurrences for MLM.")
    counter = Counter()
    for tk_ids in data:
        counter.update(tk_ids)
    counts = [0] * args.vocab_size
    for k, v in counter.items():
        counts[k] = v

    logger.info(f"Dump to {args.token_counts_dump}")
    with open(args.token_counts_dump, "wb") as handle:
        pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)