Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
|
@@ -64,18 +64,28 @@ def get_outputs(
|
|
| 64 |
):
|
| 65 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 66 |
with torch.inference_mode():
|
| 67 |
-
outputs = model
|
| 68 |
-
batch_images,
|
| 69 |
-
input_ids,
|
| 70 |
attention_mask=attention_mask,
|
| 71 |
-
|
| 72 |
-
min_length=min_generation_length,
|
| 73 |
-
num_beams=num_beams,
|
| 74 |
-
length_penalty=length_penalty,
|
| 75 |
-
image_start_index_list=image_start_index_list,
|
| 76 |
image_nums=image_nums,
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
return outputs
|
| 81 |
|
|
@@ -145,13 +155,11 @@ def generate(
|
|
| 145 |
scores = outputs["scores"]
|
| 146 |
if len(scores) > 0:
|
| 147 |
box = boxes[scores.argmax()]
|
| 148 |
-
iou = get_iou(box, gt_box)
|
| 149 |
else:
|
| 150 |
iou = 0.0
|
| 151 |
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
|
| 152 |
tqdm.write(f"no output for: {uniq_id}, {image_id}, {text}")
|
| 153 |
-
|
| 154 |
-
correct += 1
|
| 155 |
|
| 156 |
|
| 157 |
gen_text = tokenizer.batch_decode(outputs)
|
|
|
|
| 64 |
):
|
| 65 |
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 66 |
with torch.inference_mode():
|
| 67 |
+
outputs = model(
|
| 68 |
+
vision_x=batch_images,
|
| 69 |
+
lang_x=input_ids,
|
| 70 |
attention_mask=attention_mask,
|
| 71 |
+
labels=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
image_nums=image_nums,
|
| 73 |
+
image_start_index_list=image_start_index_list,
|
| 74 |
+
added_bbox_list=None,
|
| 75 |
+
add_box=False,
|
| 76 |
)
|
| 77 |
+
# outputs = model.generate(
|
| 78 |
+
# batch_images,
|
| 79 |
+
# input_ids,
|
| 80 |
+
# attention_mask=attention_mask,
|
| 81 |
+
# max_new_tokens=max_generation_length,
|
| 82 |
+
# min_length=min_generation_length,
|
| 83 |
+
# num_beams=num_beams,
|
| 84 |
+
# length_penalty=length_penalty,
|
| 85 |
+
# image_start_index_list=image_start_index_list,
|
| 86 |
+
# image_nums=image_nums,
|
| 87 |
+
# bad_words_ids=bad_words_ids,
|
| 88 |
+
# )
|
| 89 |
|
| 90 |
return outputs
|
| 91 |
|
|
|
|
| 155 |
scores = outputs["scores"]
|
| 156 |
if len(scores) > 0:
|
| 157 |
box = boxes[scores.argmax()]
|
|
|
|
| 158 |
else:
|
| 159 |
iou = 0.0
|
| 160 |
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
|
| 161 |
tqdm.write(f"no output for: {uniq_id}, {image_id}, {text}")
|
| 162 |
+
print(f"{box}")
|
|
|
|
| 163 |
|
| 164 |
|
| 165 |
gen_text = tokenizer.batch_decode(outputs)
|