Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. | |
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
https://huggingface.co/models?filter=text-generation | |
""" | |
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. | |
import json | |
import logging | |
import math | |
import os | |
import sys | |
import time | |
from dataclasses import asdict, dataclass, field | |
from enum import Enum | |
from itertools import chain | |
from pathlib import Path | |
from typing import Callable, Optional | |
import datasets | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import optax | |
from datasets import Dataset, load_dataset | |
from flax import jax_utils, traverse_util | |
from flax.jax_utils import pad_shard_unpad, unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
from huggingface_hub import Repository, create_repo | |
from tqdm import tqdm | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, | |
AutoConfig, | |
AutoTokenizer, | |
FlaxAutoModelForCausalLM, | |
HfArgumentParser, | |
is_tensorboard_available, | |
set_seed, | |
) | |
from transformers.testing_utils import CaptureLogger | |
from transformers.utils import get_full_repo_name, send_example_telemetry | |
logger = logging.getLogger(__name__) | |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class TrainingArguments: | |
output_dir: str = field( | |
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
) | |
overwrite_output_dir: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Overwrite the content of the output directory. " | |
"Use this to continue training if output_dir points to a checkpoint directory." | |
) | |
}, | |
) | |
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
per_device_train_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
) | |
per_device_eval_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
) | |
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
push_to_hub: bool = field( | |
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
) | |
hub_model_id: str = field( | |
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
) | |
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
def __post_init__(self): | |
if self.output_dir is not None: | |
self.output_dir = os.path.expanduser(self.output_dir) | |
def to_dict(self): | |
""" | |
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
the token values by removing their value. | |
""" | |
d = asdict(self) | |
for k, v in d.items(): | |
if isinstance(v, Enum): | |
d[k] = v.value | |
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
d[k] = [x.value for x in v] | |
if k.endswith("_token"): | |
d[k] = f"<{k.upper()}>" | |
return d | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." | |
) | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": ( | |
"Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
" `[float32, float16, bfloat16]`." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
validation_split_percentage: Optional[int] = field( | |
default=5, | |
metadata={ | |
"help": "The percentage of the train set used as validation set in case there's no validation split" | |
}, | |
) | |
block_size: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Optional input sequence length after tokenization. " | |
"The training dataset will be truncated in block of this size for training. " | |
"Default to the model max input length for single sentence inputs (take into account special tokens)." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
keep_linebreaks: bool = field( | |
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | |
class TrainState(train_state.TrainState): | |
dropout_rng: jnp.ndarray | |
def replicate(self): | |
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True): | |
""" | |
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, | |
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. | |
""" | |
if shuffle: | |
batch_idx = jax.random.permutation(rng, len(dataset)) | |
batch_idx = np.asarray(batch_idx) | |
else: | |
batch_idx = np.arange(len(dataset)) | |
if drop_last: | |
steps_per_epoch = len(dataset) // batch_size | |
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) | |
else: | |
steps_per_epoch = math.ceil(len(dataset) / batch_size) | |
batch_idx = np.array_split(batch_idx, steps_per_epoch) | |
for idx in batch_idx: | |
batch = dataset[idx] | |
batch = {k: np.array(v) for k, v in batch.items()} | |
yield batch | |
def write_train_metric(summary_writer, train_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
def write_eval_metric(summary_writer, eval_metrics, step): | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_clm", model_args, data_args, framework="flax") | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Handle the repository creation | |
if training_args.push_to_hub: | |
if training_args.hub_model_id is None: | |
repo_name = get_full_repo_name( | |
Path(training_args.output_dir).absolute().name, token=training_args.hub_token | |
) | |
else: | |
repo_name = training_args.hub_model_id | |
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | |
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
keep_in_memory=False, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
if "validation" not in dataset.keys(): | |
dataset["validation"] = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
split=f"train[:{data_args.validation_split_percentage}%]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
dataset["train"] = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
split=f"train[{data_args.validation_split_percentage}%:]", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
data_files = {} | |
dataset_args = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.train_file.split(".")[-1] | |
if extension == "txt": | |
extension = "text" | |
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks | |
dataset = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
**dataset_args, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
if "validation" not in dataset.keys(): | |
dataset["validation"] = load_dataset( | |
extension, | |
data_files=data_files, | |
split=f"train[:{data_args.validation_split_percentage}%]", | |
cache_dir=model_args.cache_dir, | |
**dataset_args, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
dataset["train"] = load_dataset( | |
extension, | |
data_files=data_files, | |
split=f"train[{data_args.validation_split_percentage}%:]", | |
cache_dir=model_args.cache_dir, | |
**dataset_args, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained( | |
model_args.config_name, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
if model_args.model_name_or_path: | |
model = FlaxAutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
model = FlaxAutoModelForCausalLM.from_config( | |
config, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
) | |
# Preprocessing the datasets. | |
# First we tokenize all the texts. | |
if training_args.do_train: | |
column_names = dataset["train"].column_names | |
else: | |
column_names = dataset["validation"].column_names | |
text_column_name = "text" if "text" in column_names else column_names[0] | |
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function | |
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") | |
def tokenize_function(examples): | |
with CaptureLogger(tok_logger) as cl: | |
output = tokenizer(examples[text_column_name]) | |
# clm input could be much much longer than block_size | |
if "Token indices sequence length is longer than the" in cl.out: | |
tok_logger.warning( | |
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" | |
" before being passed to the model." | |
) | |
return output | |
tokenized_datasets = dataset.map( | |
tokenize_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.block_size is None: | |
block_size = tokenizer.model_max_length | |
if block_size > config.max_position_embeddings: | |
logger.warning( | |
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " | |
"Picking 1024 instead. You can change that default value by passing --block_size xxx." | |
) | |
block_size = 1024 | |
else: | |
if data_args.block_size > tokenizer.model_max_length: | |
logger.warning( | |
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" | |
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." | |
) | |
block_size = min(data_args.block_size, tokenizer.model_max_length) | |
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. | |
def group_texts(examples): | |
# Concatenate all texts. | |
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} | |
total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
# customize this part to your needs. | |
if total_length >= block_size: | |
total_length = (total_length // block_size) * block_size | |
# Split by chunks of max_len. | |
result = { | |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
for k, t in concatenated_examples.items() | |
} | |
result["labels"] = result["input_ids"].copy() | |
return result | |
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder | |
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower | |
# to preprocess. | |
# | |
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information: | |
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map | |
lm_datasets = tokenized_datasets.map( | |
group_texts, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if training_args.do_train: | |
if "train" not in tokenized_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = lm_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in tokenized_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = lm_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
# Enable tensorboard only on the master node | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
rng, dropout_rng = jax.random.split(rng) | |
# Store some constant | |
num_epochs = int(training_args.num_train_epochs) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
eval_batch_size = per_device_eval_batch_size * jax.device_count() | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
total_train_steps = steps_per_epoch * num_epochs | |
# Create learning rate schedule | |
linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
len(train_dataset), | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
# find out all LayerNorm parameters | |
layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
layer_norm_named_params = { | |
layer[-2:] | |
for layer_norm_name in layer_norm_candidates | |
for layer in flat_params.keys() | |
if layer_norm_name in "".join(layer).lower() | |
} | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
# create adam optimizer | |
if training_args.adafactor: | |
# We use the default parameters here to initialize adafactor, | |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 | |
optimizer = optax.adafactor( | |
learning_rate=linear_decay_lr_schedule_fn, | |
) | |
else: | |
optimizer = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
# Setup train state | |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng) | |
def loss_fn(logits, labels): | |
shift_logits = logits[..., :-1, :] | |
shift_labels = labels[..., 1:] | |
loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1])) | |
return loss.mean() | |
# Define gradient update step fn | |
def train_step(state, batch): | |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
def compute_loss(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss = loss_fn(logits, labels) | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) | |
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_state, metrics | |
# Define eval fn | |
def eval_step(params, batch): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
loss = loss_fn(logits, labels) | |
# summarize metrics | |
metrics = {"loss": loss} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return metrics | |
# Create parallel version of the train and eval step | |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
p_eval_step = jax.pmap(eval_step, "batch") | |
# Replicate the train state on each device | |
state = state.replicate() | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_epochs}") | |
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") | |
logger.info(f" Total optimization steps = {total_train_steps}") | |
train_time = 0 | |
train_metrics = [] | |
epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_start = time.time() | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
# Generate an epoch by shuffling sampling indices from the train dataset | |
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
# train | |
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): | |
batch = next(train_loader) | |
batch = shard(batch) | |
state, train_metric = p_train_step(state, batch) | |
train_metrics.append(train_metric) | |
cur_step = epoch * (len(train_dataset) // train_batch_size) + step | |
if cur_step % training_args.logging_steps == 0 and cur_step > 0: | |
# Save metrics | |
train_metric = unreplicate(train_metric) | |
train_time += time.time() - train_start | |
if has_tensorboard and jax.process_index() == 0: | |
write_train_metric(summary_writer, train_metrics, train_time, cur_step) | |
epochs.write( | |
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:" | |
f" {train_metric['learning_rate'].mean()})" | |
) | |
train_metrics = [] | |
if cur_step % training_args.eval_steps == 0 and cur_step > 0: | |
# ======================== Evaluating ============================== | |
eval_metrics = [] | |
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) | |
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) | |
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): | |
# Model forward | |
batch = next(eval_loader) | |
metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
state.params, batch, min_device_batch=per_device_eval_batch_size | |
) | |
eval_metrics.append(metrics) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) | |
try: | |
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) | |
except OverflowError: | |
eval_metrics["perplexity"] = float("inf") | |
# Print metrics and update progress bar | |
desc = ( | |
f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:" | |
f" {eval_metrics['perplexity']})" | |
) | |
epochs.write(desc) | |
epochs.desc = desc | |
# Save metrics | |
if has_tensorboard and jax.process_index() == 0: | |
write_eval_metric(summary_writer, eval_metrics, cur_step) | |
if cur_step % training_args.save_steps == 0 and cur_step > 0: | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(unreplicate(state.params)) | |
model.save_pretrained(training_args.output_dir, params=params) | |
tokenizer.save_pretrained(training_args.output_dir) | |
if training_args.push_to_hub: | |
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) | |
# Eval after training | |
if training_args.do_eval: | |
eval_metrics = [] | |
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) | |
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) | |
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): | |
# Model forward | |
batch = next(eval_loader) | |
metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
state.params, batch, min_device_batch=per_device_eval_batch_size | |
) | |
eval_metrics.append(metrics) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics) | |
try: | |
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) | |
except OverflowError: | |
eval_metrics["perplexity"] = float("inf") | |
if jax.process_index() == 0: | |
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} | |
path = os.path.join(training_args.output_dir, "eval_results.json") | |
with open(path, "w") as f: | |
json.dump(eval_metrics, f, indent=4, sort_keys=True) | |
if __name__ == "__main__": | |
main() | |