Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Copyright (c) Megvii Inc. All rights reserved. | |
| import os | |
| import random | |
| import cv2 | |
| import numpy as np | |
| __all__ = [ | |
| "mkdir", "nms", "multiclass_nms", "demo_postprocess", "random_color", "visualize_assign" | |
| ] | |
| def random_color(): | |
| return random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) | |
| def visualize_assign(img, boxes, coords, match_results, save_name=None) -> np.ndarray: | |
| """visualize label assign result. | |
| Args: | |
| img: img to visualize | |
| boxes: gt boxes in xyxy format | |
| coords: coords of matched anchors | |
| match_results: match results of each gt box and coord. | |
| save_name: name of save image, if None, image will not be saved. Default: None. | |
| """ | |
| for box_id, box in enumerate(boxes): | |
| x1, y1, x2, y2 = box | |
| color = random_color() | |
| assign_coords = coords[match_results == box_id] | |
| if assign_coords.numel() == 0: | |
| # unmatched boxes are red | |
| color = (0, 0, 255) | |
| cv2.putText( | |
| img, "unmatched", (int(x1), int(y1) - 5), | |
| cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1 | |
| ) | |
| else: | |
| for coord in assign_coords: | |
| # draw assigned anchor | |
| cv2.circle(img, (int(coord[0]), int(coord[1])), 3, color, -1) | |
| cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) | |
| if save_name is not None: | |
| cv2.imwrite(save_name, img) | |
| return img | |
| def mkdir(path): | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |
| def nms(boxes, scores, nms_thr): | |
| """Single class NMS implemented in Numpy.""" | |
| x1 = boxes[:, 0] | |
| y1 = boxes[:, 1] | |
| x2 = boxes[:, 2] | |
| y2 = boxes[:, 3] | |
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| order = scores.argsort()[::-1] | |
| keep = [] | |
| while order.size > 0: | |
| i = order[0] | |
| keep.append(i) | |
| xx1 = np.maximum(x1[i], x1[order[1:]]) | |
| yy1 = np.maximum(y1[i], y1[order[1:]]) | |
| xx2 = np.minimum(x2[i], x2[order[1:]]) | |
| yy2 = np.minimum(y2[i], y2[order[1:]]) | |
| w = np.maximum(0.0, xx2 - xx1 + 1) | |
| h = np.maximum(0.0, yy2 - yy1 + 1) | |
| inter = w * h | |
| ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
| inds = np.where(ovr <= nms_thr)[0] | |
| order = order[inds + 1] | |
| return keep | |
| def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): | |
| """Multiclass NMS implemented in Numpy""" | |
| if class_agnostic: | |
| nms_method = multiclass_nms_class_agnostic | |
| else: | |
| nms_method = multiclass_nms_class_aware | |
| return nms_method(boxes, scores, nms_thr, score_thr) | |
| def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): | |
| """Multiclass NMS implemented in Numpy. Class-aware version.""" | |
| final_dets = [] | |
| num_classes = scores.shape[1] | |
| for cls_ind in range(num_classes): | |
| cls_scores = scores[:, cls_ind] | |
| valid_score_mask = cls_scores > score_thr | |
| if valid_score_mask.sum() == 0: | |
| continue | |
| else: | |
| valid_scores = cls_scores[valid_score_mask] | |
| valid_boxes = boxes[valid_score_mask] | |
| keep = nms(valid_boxes, valid_scores, nms_thr) | |
| if len(keep) > 0: | |
| cls_inds = np.ones((len(keep), 1)) * cls_ind | |
| dets = np.concatenate( | |
| [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 | |
| ) | |
| final_dets.append(dets) | |
| if len(final_dets) == 0: | |
| return None | |
| return np.concatenate(final_dets, 0) | |
| def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): | |
| """Multiclass NMS implemented in Numpy. Class-agnostic version.""" | |
| cls_inds = scores.argmax(1) | |
| cls_scores = scores[np.arange(len(cls_inds)), cls_inds] | |
| valid_score_mask = cls_scores > score_thr | |
| if valid_score_mask.sum() == 0: | |
| return None | |
| valid_scores = cls_scores[valid_score_mask] | |
| valid_boxes = boxes[valid_score_mask] | |
| valid_cls_inds = cls_inds[valid_score_mask] | |
| keep = nms(valid_boxes, valid_scores, nms_thr) | |
| if keep: | |
| dets = np.concatenate( | |
| [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 | |
| ) | |
| return dets | |
| def demo_postprocess(outputs, img_size, p6=False): | |
| grids = [] | |
| expanded_strides = [] | |
| strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] | |
| hsizes = [img_size[0] // stride for stride in strides] | |
| wsizes = [img_size[1] // stride for stride in strides] | |
| for hsize, wsize, stride in zip(hsizes, wsizes, strides): | |
| xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) | |
| grid = np.stack((xv, yv), 2).reshape(1, -1, 2) | |
| grids.append(grid) | |
| shape = grid.shape[:2] | |
| expanded_strides.append(np.full((*shape, 1), stride)) | |
| grids = np.concatenate(grids, 1) | |
| expanded_strides = np.concatenate(expanded_strides, 1) | |
| outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides | |
| outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides | |
| return outputs | |