import gradio as gr import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer # Repos BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" ADAPTER_REPO = "cheberle/autotrain-35swc-b4r9z" # 1. Load the PEFT config to confirm the base model peft_config = PeftConfig.from_pretrained(ADAPTER_REPO) print("PEFT Base Model:", peft_config.base_model_name_or_path) # 2. Load the tokenizer & base model tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True, language='de') base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, revision="4831ee1375be5b4ff5a4abf7984e13628db44e35", ignore_mismatched_sizes=True, trust_remote_code=True, device_map="auto", ) # 3. Load your LoRA adapter weights onto the base model model = PeftModel.from_pretrained( base_model, ADAPTER_REPO, ignore_mismatched_sizes=True, ) def extract_food_term(text): """ Extract or simplify a German food term to a single word or best descriptor. """ prompt = f"Extrahiere das beste ein Wort oder den Begriff, der dieses Nahrungsmittel beschreibt:\nInput: {text}\nOutput:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=16, # Limit output to a single word temperature=0.0, # Deterministic output top_p=1.0, # Focus on the most likely word do_sample=False, # Disable sampling ) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the generated output answer = answer.split("Output:")[1].strip() return answer with gr.Blocks() as demo: gr.Markdown("## Qwen + LoRA Adapter: Lebensmittelbegriffserkennung Demo") input_box = gr.Textbox(lines=1, label="Geben Sie ein Nahrungsmittel ein (z.B., 'Blaubeertorte')") output_box = gr.Textbox(lines=1, label="Beste ein Wort-Beschreibung") extract_btn = gr.Button("Begriff extrahieren") extract_btn.click(fn=extract_food_term, inputs=input_box, outputs=output_box) if __name__ == "__main__": demo.launch()