- app.py +80 -22
- requirements.txt +2 -3
app.py
CHANGED
@@ -1,27 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
fn=classify_text,
|
20 |
-
inputs=gr.Textbox(label="Enter Text"),
|
21 |
-
outputs=gr.Label(label="Class Probabilities"),
|
22 |
-
title="DeepSeek-R1 Text Classification",
|
23 |
-
description="A text classification app powered by DeepSeek-R1."
|
24 |
)
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# ---------------------------------------------------------------------------
|
6 |
+
# 1) Load the model and tokenizer
|
7 |
+
# ---------------------------------------------------------------------------
|
8 |
+
# If you want to load in 8-bit or 4-bit precision with bitsandbytes,
|
9 |
+
# uncomment and install bitsandbytes, and set load_in_8bit=True or load_in_4bit=True.
|
10 |
+
# For example:
|
11 |
+
#
|
12 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
13 |
+
# bnb_config = BitsAndBytesConfig(
|
14 |
+
# load_in_4bit=True, # or load_in_8bit=True
|
15 |
+
# bnb_4bit_compute_dtype=torch.float16, # recommended compute dtype
|
16 |
+
# bnb_4bit_use_double_quant=True, # optional
|
17 |
+
# bnb_4bit_quant_type='nf4', # optional
|
18 |
+
# )
|
19 |
+
#
|
20 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
# "cheberle/autotrain-35swc-b4r9z",
|
22 |
+
# quantization_config=bnb_config,
|
23 |
+
# device_map="auto",
|
24 |
+
# trust_remote_code=True
|
25 |
+
# )
|
26 |
+
# tokenizer = AutoTokenizer.from_pretrained("cheberle/autotrain-35swc-b4r9z", trust_remote_code=True)
|
27 |
|
28 |
+
# For a standard FP16 or FP32 load (no bitsandbytes):
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
"cheberle/autotrain-35swc-b4r9z",
|
31 |
+
device_map="auto", # Device automatically mapped across GPUs or CPU
|
32 |
+
torch_dtype=torch.float16, # Or "auto", or float32
|
33 |
+
trust_remote_code=True
|
34 |
+
)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
"cheberle/autotrain-35swc-b4r9z",
|
37 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
|
40 |
+
# ---------------------------------------------------------------------------
|
41 |
+
# 2) Define a text generation function
|
42 |
+
# ---------------------------------------------------------------------------
|
43 |
+
def generate_text(prompt):
|
44 |
+
# Tokenize input
|
45 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
+
# Generate output (configure generation args as needed)
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model.generate(
|
50 |
+
**inputs,
|
51 |
+
max_new_tokens=128,
|
52 |
+
temperature=0.7,
|
53 |
+
top_p=0.9,
|
54 |
+
do_sample=True
|
55 |
+
)
|
56 |
+
|
57 |
+
# Decode
|
58 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
return decoded
|
60 |
+
|
61 |
+
# ---------------------------------------------------------------------------
|
62 |
+
# 3) Create the Gradio interface
|
63 |
+
# ---------------------------------------------------------------------------
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("<h3>Demo: cheberle/autotrain-35swc-b4r9z</h3>")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
prompt_in = gr.Textbox(
|
70 |
+
lines=5,
|
71 |
+
label="Enter your prompt",
|
72 |
+
placeholder="Ask something here..."
|
73 |
+
)
|
74 |
+
submit_btn = gr.Button("Generate")
|
75 |
+
with gr.Column():
|
76 |
+
output_box = gr.Textbox(lines=15, label="Model Output")
|
77 |
+
|
78 |
+
# Define what happens on button click
|
79 |
+
submit_btn.click(fn=generate_text, inputs=prompt_in, outputs=output_box)
|
80 |
+
|
81 |
+
# ---------------------------------------------------------------------------
|
82 |
+
# 4) Launch!
|
83 |
+
# ---------------------------------------------------------------------------
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
-
transformers
|
3 |
torch
|
4 |
-
|
5 |
-
|
|
|
1 |
huggingface_hub==0.25.2
|
|
|
2 |
torch
|
3 |
+
transformers
|
4 |
+
gradio
|