deepseek / app.py
cheberle's picture
f
80b5781
import gradio as gr
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
# Repos
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
ADAPTER_REPO = "cheberle/autotrain-35swc-b4r9z"
# 1. Load the PEFT config to confirm the base model
peft_config = PeftConfig.from_pretrained(ADAPTER_REPO)
print("PEFT Base Model:", peft_config.base_model_name_or_path)
# 2. Load the tokenizer & base model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True, language='de')
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
revision="4831ee1375be5b4ff5a4abf7984e13628db44e35",
ignore_mismatched_sizes=True,
trust_remote_code=True,
device_map="auto",
)
# 3. Load your LoRA adapter weights onto the base model
model = PeftModel.from_pretrained(
base_model,
ADAPTER_REPO,
ignore_mismatched_sizes=True,
)
def extract_food_term(text):
"""
Extract or simplify a German food term to a single word or best descriptor.
"""
prompt = f"Extrahiere das beste ein Wort oder den Begriff, der dieses Nahrungsmittel beschreibt:\nInput: {text}\nOutput:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=16, # Limit output to a single word
temperature=0.0, # Deterministic output
top_p=1.0, # Focus on the most likely word
do_sample=False, # Disable sampling
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated output
answer = answer.split("Output:")[1].strip()
return answer
with gr.Blocks() as demo:
gr.Markdown("## Qwen + LoRA Adapter: Lebensmittelbegriffserkennung Demo")
input_box = gr.Textbox(lines=1, label="Geben Sie ein Nahrungsmittel ein (z.B., 'Blaubeertorte')")
output_box = gr.Textbox(lines=1, label="Beste ein Wort-Beschreibung")
extract_btn = gr.Button("Begriff extrahieren")
extract_btn.click(fn=extract_food_term, inputs=input_box, outputs=output_box)
if __name__ == "__main__":
demo.launch()