|
import gradio as gr |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" |
|
ADAPTER_REPO = "cheberle/autotrain-35swc-b4r9z" |
|
|
|
|
|
peft_config = PeftConfig.from_pretrained(ADAPTER_REPO) |
|
print("PEFT Base Model:", peft_config.base_model_name_or_path) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True, language='de') |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
revision="4831ee1375be5b4ff5a4abf7984e13628db44e35", |
|
ignore_mismatched_sizes=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained( |
|
base_model, |
|
ADAPTER_REPO, |
|
ignore_mismatched_sizes=True, |
|
) |
|
|
|
def extract_food_term(text): |
|
""" |
|
Extract or simplify a German food term to a single word or best descriptor. |
|
""" |
|
prompt = f"Extrahiere das beste ein Wort oder den Begriff, der dieses Nahrungsmittel beschreibt:\nInput: {text}\nOutput:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=16, |
|
temperature=0.0, |
|
top_p=1.0, |
|
do_sample=False, |
|
) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
answer = answer.split("Output:")[1].strip() |
|
return answer |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Qwen + LoRA Adapter: Lebensmittelbegriffserkennung Demo") |
|
input_box = gr.Textbox(lines=1, label="Geben Sie ein Nahrungsmittel ein (z.B., 'Blaubeertorte')") |
|
output_box = gr.Textbox(lines=1, label="Beste ein Wort-Beschreibung") |
|
|
|
extract_btn = gr.Button("Begriff extrahieren") |
|
extract_btn.click(fn=extract_food_term, inputs=input_box, outputs=output_box) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |