File size: 12,854 Bytes
23eb270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python3
"""this module contains the class Yolo"""
import tensorflow.keras as K
import numpy as np
import os
import cv2


def sigmoid(x):
    """sigmoid function"""
    return 1 / (1 + np.exp(-x))


class Yolo:
    """Yolo class"""

    def __init__(self, model_path, classes_path, class_t, nms_t, anchors):
        """Constructor method
        """
        if not os.path.exists(model_path):
            raise FileNotFoundError("Wrong model file path")

        if not os.path.exists(classes_path):
            raise FileNotFoundError("Wrong classes file path")
        self.model = K.models.load_model(model_path)
        with open(classes_path, 'r') as f:
            self.class_names = [line[:-1] for line in f]
        self.class_t = class_t
        self.nms_t = nms_t
        self.anchors = anchors

    def process_outputs(self, outputs, image_size):
        """Process and normalize the output of the YoloV3 model
        outputs: list of numpy.ndarrays containing the predictions from the Darknet model for a single image
        image_size: numpy.ndarray containing the image’s original size [image_height, image_width]
        Returns a tuple of (boxes, box_confidences, box_class_probs)"""
        boxes = []
        box_confidences = []
        box_class_probs = []
        img_h, img_w = image_size
        i = 0
        for output in outputs:
            grid_h, grid_w, nb_box, _ = output.shape
            box_conf = sigmoid(output[:, :, :, 4:5])
            box_prob = sigmoid(output[:, :, :, 5:])
            box_confidences.append(box_conf)
            box_class_probs.append(box_prob)
            # t_x, t_y : x and y coordinates of the center pt of the anchor box
            # t_w, t_h : width and height of the anchor box
            t_x = output[:, :, :, 0]
            t_y = output[:, :, :, 1]
            t_w = output[:, :, :, 2]
            t_h = output[:, :, :, 3]
            # c_x, c_y : represents the grid of model
            c_x = np.arange(grid_w)
            c_x = np.tile(c_x, grid_h)
            c_x = c_x.reshape(grid_h, grid_w, 1)

            c_y = np.arange(grid_h)
            c_y = np.tile(c_y, grid_w)
            c_y = c_y.reshape(1, grid_h, grid_w).T

            # p_w, p_h : anchors dimensions in the c

            p_w = self.anchors[i, :, 0]
            p_h = self.anchors[i, :, 1]

            # yolo formula (get the coordinates in the prediction box)
            b_x = (sigmoid(t_x) + c_x)
            b_y = (sigmoid(t_y) + c_y)
            b_w = (np.exp(t_w) * p_w)
            b_h = (np.exp(t_h) * p_h)
            # normalize to the input size
            b_x = b_x / grid_w
            b_y = b_y / grid_h
            b_w = b_w / self.model.input.shape[1]
            b_h = b_h / self.model.input.shape[2]
            # scale to the image size (in pixels)
            # top left corner
            x1 = (b_x - b_w / 2) * img_w
            y1 = (b_y - b_h / 2) * img_h
            # bottom right corner
            x2 = (b_x + b_w / 2) * img_w
            y2 = (b_y + b_h / 2) * img_h
            # create the current box
            box = np.zeros((grid_h, grid_w, nb_box, 4))
            box[:, :, :, 0] = x1
            box[:, :, :, 1] = y1
            box[:, :, :, 2] = x2
            box[:, :, :, 3] = y2
            boxes.append(box)
            i += 1
        return boxes, box_confidences, box_class_probs

    def filter_boxes(self, boxes, box_confidences, box_class_probs):
        """Filter boxes based on class confidence score.

        Args:
            boxes: (list of numpy.ndarray) List of numpy.ndarrays with shape
                (grid_height, grid_width, anchor_boxes, 4) containing the
                processed boundary boxes for each output.
            box_confidences: (list of numpy.ndarray) List of np with shape
                            (grid_height, grid_width, anchor_boxes, 1)
            box_class_probs: (list of numpy.ndarray) List of np with shape
                            (grid_height, grid_width, anchor_boxes, classes)
                            the processed box class probabilities for output.

        Returns:
            - filtered_boxes: (?,4) ? = num of boxes, 4 = coordinates
            - box_classes: (?,) ? = num of boxes and contains the class number
            - box_scores: (?,) ? = num of boxes and contains the box scores
        """

        # Extract confidence scores for each class
        class_t = self.class_t
        scores = []
        filtered_boxes = []
        box_classes = []
        box_scores = []

        for i in range(len(boxes)):
            # box_conf = conf_prob for box i
            box_conf = box_confidences[i][..., 0]
            # box_class_prob = class_prob for box i
            box_class_prob = box_class_probs[i]
            # box_class_indices = class index with highest score for box i
            class_indices = np.argmax(box_class_prob, axis=-1)
            # class_prob = highest score for box i
            class_prob = np.max(box_class_prob, axis=-1)
            # score for box i
            score = box_conf * class_prob

            # Filter based on the class threshold
            # mask = boolean variable that tells if the score >= class_t
            mask = score >= class_t
            scores.append(score[mask])
            filtered_boxes.append(boxes[i][mask])
            box_classes.append(class_indices[mask])
            box_scores.append(score[mask])

        # Concatenate results
        scores = np.concatenate(scores)
        filtered_boxes = np.concatenate(filtered_boxes)
        box_classes = np.concatenate(box_classes)
        box_scores = np.concatenate(box_scores)

        return filtered_boxes, box_classes, box_scores

    def non_max_suppression(self, filtered_boxes, box_classes, box_scores):
        """Non-max suppression.
           filtered_boxes: (?, 4) contains all filtered bounding boxes
              box_classes: (?,) contains the class number for the class that
                            filtered_boxes predicts, respectively
                box_scores: (?,) contains the box scores for each box in
                            filtered_boxes, respectively
            returns a tuple of
                (box_predictions, predicted_box_classes, predicted_box_scores)

            """
        nms_t = self.nms_t
        box_predictions = []
        predicted_box_classes = []
        predicted_box_scores = []
        unique_classes = np.unique(box_classes)

        for cls in unique_classes:
            # Filter boxes, classes, and scores for the current class
            idx = np.where(box_classes == cls)
            boxes_of_cls = filtered_boxes[idx]
            classes_of_cls = box_classes[idx]
            scores_of_cls = box_scores[idx]

            # Sort  by confidence scores from high to low
            order = scores_of_cls.argsort()[::-1]
            keep = []

            x1 = boxes_of_cls[:, 0]
            y1 = boxes_of_cls[:, 1]
            x2 = boxes_of_cls[:, 2]
            y2 = boxes_of_cls[:, 3]

            # Calculate areas for all boxes in this class
            areas = (x2 - x1 + 1) * (y2 - y1 + 1)

            while order.shape[0] > 0:
                i = order[0]
                keep.append(i)

                # Intersection coord of the crnt box with the rest of boxes
                xx1 = np.maximum(x1[i], x1[order[1:]])
                yy1 = np.maximum(y1[i], y1[order[1:]])
                xx2 = np.minimum(x2[i], x2[order[1:]])
                yy2 = np.minimum(y2[i], y2[order[1:]])

                # Intersection width and height
                w = np.maximum(0.0, xx2 - xx1 + 1)
                h = np.maximum(0.0, yy2 - yy1 + 1)

                # Intersection area
                inter = w * h
                all_area = areas[i] + areas[order[1:]] - inter
                overlap = inter / all_area

                # First filter: boxes with overlap > nms_t
                inds = np.where(overlap <= nms_t)[0]
                # Second filter: remove boxes that match the current box
                order = order[inds + 1]

            box_predictions.append(boxes_of_cls[keep])
            predicted_box_classes.append(classes_of_cls[keep])
            predicted_box_scores.append(scores_of_cls[keep])

        box_predictions = np.concatenate(box_predictions)
        predicted_box_classes = np.concatenate(predicted_box_classes)
        predicted_box_scores = np.concatenate(predicted_box_scores)

        return box_predictions, predicted_box_classes, predicted_box_scores

    @staticmethod
    def load_images(folder_path):
        """Load images from a folder"""
        if not os.path.exists(folder_path):
            return None
        images = []
        paths = []
        image_paths = os.listdir(folder_path)
        for image in image_paths:
            img = cv2.imread(os.path.join(folder_path, image))
            if img is not None:
                images.append(img)
                paths.append(os.path.join('./yolo', image))
        return (images, paths)

    def preprocess_images(self, images):
        """Resize and rescale the images before process"""
        input_w = self.model.input.shape[1]
        input_h = self.model.input.shape[2]
        image_shapes = []
        pimages = []
        for image in images:
            image_shapes.append(image.shape[:2])
            pimage = cv2.resize(image, (input_w, input_h),
                                interpolation=cv2.INTER_CUBIC)
            pimage = pimage / 255
            pimages.append(pimage)
        return np.array(pimages), np.array(image_shapes)

    def show_boxes(self, image, boxes, box_classes, box_scores, file_name):
        """Show the boxes in an image"""
        imagec = image.copy()
        for idx, box in enumerate(boxes):
            top_left_x = int(box[0])
            top_left_y = int(box[1])
            bottom_right_x = int(box[2])
            bottom_right_y = int(box[3])
            class_name = self.class_names[box_classes[idx]]
            score = box_scores[idx]
            color = (255, 0, 0)
            cv2.rectangle(imagec, (top_left_x, top_left_y),
                          (bottom_right_x, bottom_right_y),
                          color, 2)
            text = class_name + " " + "{:.2f}".format(score)
            cv2.putText(imagec, text, (top_left_x, top_left_y - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1,
                        cv2.LINE_AA)
        cv2.imshow(file_name, imagec)
        key = cv2.waitKey(0)
        if key == ord('s'):
            if not os.path.exists('./detections'):
                os.mkdir('./detections')
            cv2.imwrite(os.path.join('./detections', file_name), imagec)
        cv2.destroyAllWindows()

    def predict(self, folder_path):
        """Predict the bounding boxes for all images in a folder"""
        predictions = []
        images, image_paths = self.load_images(folder_path)
        pimages, image_shapes = self.preprocess_images(images)
        outputs = self.model.predict(pimages)
        for i in range(len(images)):
            # process_outputs
            poutouts = [out[i] for out in outputs]
            boxes, box_confidences, box_class_probs = self.process_outputs(
                poutouts, image_shapes[i])
            # filter_boxes
            filtered_boxes, box_classes, box_scores = self.filter_boxes(
                boxes, box_confidences, box_class_probs)
            # non_max_suppression
            boxes, box_classes, box_scores = self.non_max_suppression(
                filtered_boxes, box_classes, box_scores)
            # show_boxes
            self.show_boxes(images[i], boxes, box_classes, box_scores,
                            image_paths[i].split('/')[-1])
            predictions.append((boxes, box_classes, box_scores))
        return predictions, image_paths
    def predict_frame(self, frame):
        """yolo algorithm on frame"""
        # process frame
        image = cv2.resize(frame, (self.model.input.shape[1],
                                   self.model.input.shape[2]),
                           interpolation=cv2.INTER_CUBIC)
        image = image / 255
        image = np.expand_dims(image, axis=0)
        # predict
        outputs = self.model.predict(image)
        # process_outputs
        poutouts = [out[0] for out in outputs]
        boxes, box_confidences, box_class_probs = self.process_outputs(
            poutouts, frame.shape[:2])
        # filter_boxes
        filtered_boxes, box_classes, box_scores = self.filter_boxes(
            boxes, box_confidences, box_class_probs)
        # non_max_suppression
        boxes, box_classes, box_scores = self.non_max_suppression(
            filtered_boxes, box_classes, box_scores)
        # show_boxes
        return boxes, box_classes, box_scores