Spaces:
Runtime error
Runtime error
Commit
·
3a59ab0
0
Parent(s):
Duplicate from johnsu6616/SD_Helper_01
Browse filesCo-authored-by: johnsu <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +309 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SD_Helper_01
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.30.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: openrail
|
11 |
+
duplicated_from: johnsu6616/SD_Helper_01
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from transformers import AutoModelForCausalLM
|
8 |
+
from transformers import AutoModelForSeq2SeqLM
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
|
11 |
+
from transformers import AutoProcessor
|
12 |
+
|
13 |
+
from transformers import pipeline
|
14 |
+
|
15 |
+
from transformers import set_seed
|
16 |
+
|
17 |
+
global ButtonIndex
|
18 |
+
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
22 |
+
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
23 |
+
|
24 |
+
pipeline_01 = pipeline('text-generation', model='succinctly/text2image-prompt-generator', max_new_tokens=256)
|
25 |
+
pipeline_02 = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', max_new_tokens=256)
|
26 |
+
pipeline_03 = pipeline('text-generation', model='johnsu6616/ModelExport', max_new_tokens=256)
|
27 |
+
|
28 |
+
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
|
29 |
+
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
|
30 |
+
|
31 |
+
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
|
32 |
+
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
|
33 |
+
|
34 |
+
def translate_zh2en(text):
|
35 |
+
with torch.no_grad():
|
36 |
+
text = re.sub(r"[:\-–.!;?_#]", '', text)
|
37 |
+
|
38 |
+
text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text)
|
39 |
+
text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text)
|
40 |
+
|
41 |
+
text = text.replace('\n', ',')
|
42 |
+
|
43 |
+
text =re.sub(r'(?<![a-zA-Z])\s+|\s+(?![a-zA-Z])', '', text)
|
44 |
+
|
45 |
+
text = re.sub(r',+', ',', text)
|
46 |
+
|
47 |
+
encoded = zh2en_tokenizer([text], return_tensors='pt')
|
48 |
+
sequences = zh2en_model.generate(**encoded)
|
49 |
+
result = zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
50 |
+
|
51 |
+
result = result.strip()
|
52 |
+
|
53 |
+
if result == "No,no," :
|
54 |
+
result = text
|
55 |
+
|
56 |
+
result = re.sub(r'<.*?>', '', result)
|
57 |
+
|
58 |
+
result = re.sub(r'\b(\w+)\b(?:\W+\1\b)+', r'\1', result, flags=re.IGNORECASE)
|
59 |
+
return result
|
60 |
+
|
61 |
+
|
62 |
+
def translate_en2zh(text):
|
63 |
+
with torch.no_grad():
|
64 |
+
|
65 |
+
encoded = en2zh_tokenizer([text], return_tensors="pt")
|
66 |
+
sequences = en2zh_model.generate(**encoded)
|
67 |
+
result = en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
68 |
+
|
69 |
+
result = re.sub(r'\b(\w+)\b(?:\W+\1\b)+', r'\1', result, flags=re.IGNORECASE)
|
70 |
+
return result
|
71 |
+
|
72 |
+
def load_prompter():
|
73 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
75 |
+
tokenizer.pad_token = tokenizer.eos_token
|
76 |
+
tokenizer.padding_side = "left"
|
77 |
+
return prompter_model, tokenizer
|
78 |
+
|
79 |
+
prompter_model, prompter_tokenizer = load_prompter()
|
80 |
+
|
81 |
+
|
82 |
+
def generate_prompter_pipeline_01(text):
|
83 |
+
seed = random.randint(100, 1000000)
|
84 |
+
set_seed(seed)
|
85 |
+
text_in_english = translate_zh2en(text)
|
86 |
+
response = pipeline_01(text_in_english, num_return_sequences=3)
|
87 |
+
response_list = []
|
88 |
+
for x in response:
|
89 |
+
resp = x['generated_text'].strip()
|
90 |
+
|
91 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
92 |
+
|
93 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
94 |
+
response_list.append(resp+"\n")
|
95 |
+
response_list.append("\n")
|
96 |
+
|
97 |
+
result = "".join(response_list)
|
98 |
+
result = re.sub('[^ ]+\.[^ ]+','', result)
|
99 |
+
result = result.replace("<", "").replace(">", "")
|
100 |
+
|
101 |
+
if result != "":
|
102 |
+
return result
|
103 |
+
|
104 |
+
|
105 |
+
def generate_prompter_tokenizer_01(text):
|
106 |
+
|
107 |
+
text_in_english = translate_zh2en(text)
|
108 |
+
|
109 |
+
input_ids = prompter_tokenizer(text_in_english.strip()+" Rephrase:", return_tensors="pt").input_ids
|
110 |
+
|
111 |
+
outputs = prompter_model.generate(
|
112 |
+
input_ids,
|
113 |
+
do_sample=False,
|
114 |
+
|
115 |
+
num_beams=3,
|
116 |
+
num_return_sequences=3,
|
117 |
+
pad_token_id= 50256,
|
118 |
+
eos_token_id = 50256,
|
119 |
+
length_penalty=-1.0
|
120 |
+
)
|
121 |
+
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
122 |
+
|
123 |
+
result = []
|
124 |
+
for output_text in output_texts:
|
125 |
+
|
126 |
+
output_text = output_text.replace('<', '').replace('>', '')
|
127 |
+
output_text = output_text.split("Rephrase:", 1)[-1].strip()
|
128 |
+
|
129 |
+
result.append(translate_en2zh(output_text)+"\n")
|
130 |
+
result.append(output_text+"\n")
|
131 |
+
result.append("\n")
|
132 |
+
return "".join(result)
|
133 |
+
|
134 |
+
def generate_prompter_pipeline_02(text):
|
135 |
+
seed = random.randint(100, 1000000)
|
136 |
+
set_seed(seed)
|
137 |
+
text_in_english = translate_zh2en(text)
|
138 |
+
response = pipeline_02(text_in_english, num_return_sequences=3)
|
139 |
+
response_list = []
|
140 |
+
for x in response:
|
141 |
+
resp = x['generated_text'].strip()
|
142 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
143 |
+
|
144 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
145 |
+
response_list.append(resp+"\n")
|
146 |
+
response_list.append("\n")
|
147 |
+
|
148 |
+
result = "".join(response_list)
|
149 |
+
result = re.sub('[^ ]+\.[^ ]+','', result)
|
150 |
+
result = result.replace("<", "").replace(">", "")
|
151 |
+
|
152 |
+
if result != "":
|
153 |
+
return result
|
154 |
+
|
155 |
+
def generate_prompter_pipeline_03(text):
|
156 |
+
seed = random.randint(100, 1000000)
|
157 |
+
set_seed(seed)
|
158 |
+
text_in_english = translate_zh2en(text)
|
159 |
+
response = pipeline_03(text_in_english, num_return_sequences=3)
|
160 |
+
response_list = []
|
161 |
+
for x in response:
|
162 |
+
resp = x['generated_text'].strip()
|
163 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
164 |
+
|
165 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
166 |
+
response_list.append(resp+"\n")
|
167 |
+
response_list.append("\n")
|
168 |
+
|
169 |
+
result = "".join(response_list)
|
170 |
+
result = re.sub('[^ ]+\.[^ ]+','', result)
|
171 |
+
result = result.replace("<", "").replace(">", "")
|
172 |
+
|
173 |
+
if result != "":
|
174 |
+
return result
|
175 |
+
|
176 |
+
def generate_render(text,choice):
|
177 |
+
if choice == '★pipeline模式(succinctly)':
|
178 |
+
outputs = generate_prompter_pipeline_01(text)
|
179 |
+
return outputs,choice
|
180 |
+
elif choice == '★★tokenizer模式':
|
181 |
+
outputs = generate_prompter_tokenizer_01(text)
|
182 |
+
return outputs,choice
|
183 |
+
elif choice == '★★★pipeline模型(Gustavosta)':
|
184 |
+
outputs = generate_prompter_pipeline_02(text)
|
185 |
+
return outputs,choice
|
186 |
+
elif choice == 'pipeline模型(John)_自訓測試,資料不穩定':
|
187 |
+
outputs = generate_prompter_pipeline_03(text)
|
188 |
+
return outputs,choice
|
189 |
+
|
190 |
+
def get_prompt_from_image(input_image,choice):
|
191 |
+
image = input_image.convert('RGB')
|
192 |
+
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
|
193 |
+
generated_ids = big_model.to(device).generate(pixel_values=pixel_values)
|
194 |
+
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
195 |
+
text = re.sub(r"[:\-–.!;?_#]", '', generated_caption)
|
196 |
+
|
197 |
+
if choice == '★pipeline模式(succinctly)':
|
198 |
+
outputs = generate_prompter_pipeline_01(text)
|
199 |
+
return outputs
|
200 |
+
elif choice == '★★tokenizer模式':
|
201 |
+
outputs = generate_prompter_tokenizer_01(text)
|
202 |
+
return outputs
|
203 |
+
elif choice == '★★★pipeline模型(Gustavosta)':
|
204 |
+
outputs = generate_prompter_pipeline_02(text)
|
205 |
+
return outputs
|
206 |
+
elif choice == 'pipeline模型(John)_自訓測試,資料不穩定':
|
207 |
+
outputs = generate_prompter_pipeline_03(text)
|
208 |
+
return outputs
|
209 |
+
|
210 |
+
with gr.Blocks() as block:
|
211 |
+
with gr.Column():
|
212 |
+
with gr.Tab('工作區'):
|
213 |
+
with gr.Row():
|
214 |
+
input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...')
|
215 |
+
input_image = gr.Image(type='pil', label="選擇圖片(辨識度不佳)")
|
216 |
+
with gr.Row():
|
217 |
+
txt_prompter_btn = gr.Button('文生文')
|
218 |
+
pic_prompter_btn = gr.Button('圖生文')
|
219 |
+
with gr.Row():
|
220 |
+
radio_btn = gr.Radio(
|
221 |
+
label="請選擇產出方式",
|
222 |
+
choices=['★pipeline模式(succinctly)', '★★tokenizer模式', '★★★pipeline模型(Gustavosta)',
|
223 |
+
'pipeline模型(John)_自訓測試,資料不穩定'],
|
224 |
+
|
225 |
+
value='★pipeline模式(succinctly)'
|
226 |
+
)
|
227 |
+
|
228 |
+
with gr.Row():
|
229 |
+
Textbox_1 = gr.Textbox(lines=6, label='提示詞生成')
|
230 |
+
with gr.Row():
|
231 |
+
Textbox_2 = gr.Textbox(lines=6, label='測試資訊')
|
232 |
+
|
233 |
+
with gr.Tab('測試區'):
|
234 |
+
with gr.Row():
|
235 |
+
input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...')
|
236 |
+
test01_btn = gr.Button('執行')
|
237 |
+
Textbox_test01 = gr.Textbox(lines=2, label='輸出結果')
|
238 |
+
with gr.Row():
|
239 |
+
input_test02 = gr.Textbox(lines=2, label='英中翻譯(不精準)', placeholder='在此输入文字...')
|
240 |
+
test02_btn = gr.Button('執行')
|
241 |
+
Textbox_test02 = gr.Textbox(lines=2, label='輸出結果')
|
242 |
+
with gr.Row():
|
243 |
+
input_test03 = gr.Textbox(lines=2, label='★pipeline模式(succinctly)', placeholder='在此输入文字...')
|
244 |
+
test03_btn = gr.Button('執行')
|
245 |
+
Textbox_test03 = gr.Textbox(lines=2, label='輸出結果')
|
246 |
+
with gr.Row():
|
247 |
+
input_test04 = gr.Textbox(lines=2, label='★★tokenizer模式', placeholder='在此输入文字...')
|
248 |
+
test04_btn = gr.Button('執行')
|
249 |
+
Textbox_test04 = gr.Textbox(lines=2, label='輸出結果')
|
250 |
+
with gr.Row():
|
251 |
+
input_test05 = gr.Textbox(lines=2, label='★★★pipeline模型(Gustavosta)', placeholder='在此输入文字...')
|
252 |
+
test05_btn = gr.Button('執行')
|
253 |
+
Textbox_test05 = gr.Textbox(lines=2, label='輸出結果')
|
254 |
+
with gr.Row():
|
255 |
+
input_test06 = gr.Textbox(lines=2, label='pipeline模型(John)_自訓測試,資料不穩定', placeholder='在此输入文字...')
|
256 |
+
test06_btn = gr.Button('執行')
|
257 |
+
Textbox_test06 = gr.Textbox(lines=2, label='輸出結果')
|
258 |
+
|
259 |
+
txt_prompter_btn.click (
|
260 |
+
fn=generate_render,
|
261 |
+
inputs=[input_text,radio_btn],
|
262 |
+
outputs=[Textbox_1,Textbox_2]
|
263 |
+
)
|
264 |
+
|
265 |
+
pic_prompter_btn.click(
|
266 |
+
fn=get_prompt_from_image,
|
267 |
+
inputs=[input_image,radio_btn],
|
268 |
+
outputs=Textbox_1
|
269 |
+
)
|
270 |
+
|
271 |
+
test01_btn.click(
|
272 |
+
fn=translate_zh2en,
|
273 |
+
inputs=input_test01,
|
274 |
+
outputs=Textbox_test01
|
275 |
+
)
|
276 |
+
|
277 |
+
test02_btn.click(
|
278 |
+
fn=translate_en2zh,
|
279 |
+
inputs=input_test02,
|
280 |
+
outputs=Textbox_test02
|
281 |
+
)
|
282 |
+
|
283 |
+
test03_btn.click(
|
284 |
+
fn= generate_prompter_pipeline_01,
|
285 |
+
inputs=input_test03,
|
286 |
+
outputs=Textbox_test03
|
287 |
+
)
|
288 |
+
|
289 |
+
test04_btn.click(
|
290 |
+
fn= generate_prompter_tokenizer_01,
|
291 |
+
inputs=input_test04,
|
292 |
+
outputs=Textbox_test04
|
293 |
+
)
|
294 |
+
|
295 |
+
test05_btn.click(
|
296 |
+
fn= generate_prompter_pipeline_02,
|
297 |
+
inputs=input_test05,
|
298 |
+
outputs=Textbox_test05
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
test06_btn.click(
|
303 |
+
fn= generate_prompter_pipeline_03,
|
304 |
+
inputs= input_test06,
|
305 |
+
outputs= Textbox_test06
|
306 |
+
)
|
307 |
+
|
308 |
+
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|
309 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.29.2
|
2 |
+
torch==2.0.0
|
3 |
+
pytorch_lightning==2.0.2
|
4 |
+
gradio==3.30.0
|
5 |
+
sentencepiece==0.1.99
|
6 |
+
sacremoses==0.0.53
|