# import torch # import torchaudio # from silero_vad import get_speech_timestamps, read_audio, save_audio # def apply_silero_vad(audio_file_path): # """ # Applies Silero VAD to an audio file and returns the processed audio # containing only the voiced segments. # """ # # Load the Silero VAD model # model = torch.hub.load('snakers4/silero-vad', 'silero_vad', force_reload=True) # # Define helper utilities manually # def read_audio(path, sampling_rate=16000): # wav, sr = torchaudio.load(path) # if sr != sampling_rate: # wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sampling_rate)(wav) # return wav.squeeze(0) # def save_audio(path, tensor, sampling_rate=16000): # torchaudio.save(path, tensor.unsqueeze(0), sampling_rate) # # Read the audio file # wav = read_audio(audio_file_path, sampling_rate=16000) # # Get timestamps for speech segments # speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=16000) # # If no speech detected, raise an exception # if not speech_timestamps: # raise Exception("No voiced frames detected using Silero VAD.") # # Combine the voiced segments # voiced_audio = torch.cat([wav[ts['start']:ts['end']] for ts in speech_timestamps]) # # Save the processed audio if needed # save_audio('processed_voiced_audio.wav', voiced_audio, sampling_rate=16000) # # Convert to numpy bytes for further processing # return voiced_audio.numpy().tobytes() # # Example usage # try: # processed_audio = apply_silero_vad("path_to_your_audio.wav") # print("VAD completed successfully!") # except Exception as e: # print(f"Error during Silero VAD processing: {e}") import webrtcvad import numpy as np import librosa def apply_vad(audio, sr, frame_duration=30, aggressiveness=3): ''' Voice Activity Detection (VAD): Detects speech in audio. ''' vad = webrtcvad.Vad(aggressiveness) # Resample to 16000 Hz if not already (recommended for better compatibility) if sr != 16000: audio = librosa.resample(audio, orig_sr=sr, target_sr=16000) sr = 16000 # Convert to 16-bit PCM format expected by webrtcvad audio_int16 = np.int16(audio * 32767) # Ensure frame size matches WebRTC's expected lengths frame_size = int(sr * frame_duration / 1000) if frame_size % 2 != 0: frame_size -= 1 # Make sure it's even to avoid processing issues frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)] # Filter out non-speech frames voiced_frames = [] for frame in frames: if len(frame) == frame_size and vad.is_speech(frame.tobytes(), sample_rate=sr): voiced_frames.append(frame) # Concatenate the voiced frames voiced_audio = np.concatenate(voiced_frames) voiced_audio = np.float32(voiced_audio) / 32767 return voiced_audio