cdactvm commited on
Commit
02bd48a
·
verified ·
1 Parent(s): 64e7802

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -105
app.py CHANGED
@@ -6,7 +6,6 @@ import re
6
  import pywt
7
  import librosa
8
  import webrtcvad
9
- import nbimporter
10
  import torchaudio
11
  import numpy as np
12
  import gradio as gr
@@ -52,104 +51,7 @@ def wavelet_denoise(audio, wavelet='db1', level=1):
52
  # Function to apply a Wiener filter for noise reduction
53
  def apply_wiener_filter(audio):
54
  return wiener(audio)
55
-
56
-
57
-
58
- # def createlex(filename):
59
- # # Initialize an empty dictionary
60
- # data_dict = {}
61
-
62
- # # Open the file and read it line by line
63
- # with open(filename, "r", encoding="utf-8") as f:
64
- # for line in f:
65
- # # Strip newline characters and split by tab
66
- # key, value = line.strip().split("\t")
67
- # # Add to dictionary
68
- # data_dict[key] = value
69
- # return data_dict
70
 
71
- # lex=createlex("num_words_ta.txt")
72
-
73
- # def addnum(inlist):
74
- # sum=0
75
- # for num in inlist:
76
- # sum+=int(num)
77
-
78
- # return sum
79
-
80
- # from rapidfuzz import process
81
- # def get_val(word, lexicon):
82
- # threshold = 80 # Minimum similarity score
83
- # length_difference = 4
84
- # #length_range = (4, 6) # Acceptable character length range (min, max)
85
-
86
- # # Find the best match above the similarity threshold
87
- # result = process.extractOne(word, lexicon.keys(), score_cutoff=threshold)
88
- # #print (result)
89
- # if result:
90
- # match, score, _ = result
91
- # #print(lexicon[match])
92
- # #return lexicon[match]
93
- # if abs(len(match) - len(word)) <= length_difference:
94
- # #if length_range[0] <= len(match) <= length_range[1]:
95
- # return lexicon[match]
96
- # else:
97
- # return None
98
- # else:
99
- # return None
100
-
101
- # def convert2num(input, lex):
102
- # input += " #" # Add a period for termination
103
- # words = input.split()
104
- # i = 0
105
- # num = 0
106
- # outstr = ""
107
- # digit_end = True
108
- # numlist = []
109
- # addflag = False
110
-
111
- # # Process the words
112
- # while i < len(words):
113
- # #checkwordlist = handleSpecialnum(words[i])
114
-
115
- # # Handle special numbers
116
- # #if len(checkwordlist) == 2:
117
- # # words[i] = checkwordlist[0]
118
- # # words.insert(i + 1, checkwordlist[1]) # Collect new word for later processing
119
-
120
- # ## Get numerical value of the word
121
- # numval = get_val(words[i], lex)
122
- # if numval is not None:
123
- # if words[i][-4:] in ('த்து', 'ற்று'):
124
- # addflag = True
125
- # numlist.append(numval)
126
- # else:
127
- # if addflag:
128
- # numlist.append(numval)
129
- # num = addnum(numlist)
130
- # outstr += str(num) + " "
131
- # addflag = False
132
- # numlist = []
133
- # else:
134
- # outstr += " " + str(numval) + " "
135
- # digit_end = False
136
- # else:
137
- # if addflag:
138
- # num = addnum(numlist)
139
- # outstr += str(num) + " " + words[i] + " "
140
- # addflag = False
141
- # numlist = []
142
- # else:
143
- # outstr += words[i] + " "
144
- # if not digit_end:
145
- # digit_end = True
146
-
147
- # # Move to the next word
148
- # i += 1
149
-
150
- # # Final processing
151
- # outstr = outstr.replace('#','') # Remove trailing spaces
152
- # return outstr
153
 
154
  # # Function to handle speech recognition
155
  def recognize_speech(audio_file):
@@ -176,13 +78,6 @@ def sel_lng(lng, mic=None, file=None):
176
 
177
  if lng == "model_1":
178
  return recognize_speech(audio)
179
- # elif lng == "model_2":
180
- # return transcribe_hindi_new(audio)
181
- # elif lng== "model_3":
182
- # return transcribe_hindi_lm(audio)
183
- # elif lng== "model_4":
184
- # return Noise_cancellation_function(audio)
185
-
186
 
187
  demo=gr.Interface(
188
  fn=sel_lng,
 
6
  import pywt
7
  import librosa
8
  import webrtcvad
 
9
  import torchaudio
10
  import numpy as np
11
  import gradio as gr
 
51
  # Function to apply a Wiener filter for noise reduction
52
  def apply_wiener_filter(audio):
53
  return wiener(audio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  # # Function to handle speech recognition
57
  def recognize_speech(audio_file):
 
78
 
79
  if lng == "model_1":
80
  return recognize_speech(audio)
 
 
 
 
 
 
 
81
 
82
  demo=gr.Interface(
83
  fn=sel_lng,