cconsti commited on
Commit
6b4b78f
Β·
verified Β·
1 Parent(s): 0d716fc

Update train.py

Browse files
Files changed (1) hide show
  1. train.py +13 -10
train.py CHANGED
@@ -6,8 +6,10 @@ from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, Train
6
  os.environ["HF_HOME"] = "/app/hf_cache"
7
  os.environ["HF_DATASETS_CACHE"] = "/app/hf_cache"
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
9
- output_dir = "/tmp/t5-finetuned"
10
- os.makedirs(output_dir, exist_ok=True)
 
 
11
  # Load dataset
12
  dataset = load_dataset("tatsu-lab/alpaca")
13
  dataset["train"] = dataset["train"].select(range(2000))
@@ -48,19 +50,20 @@ print("Dataset successfully split and tokenized.")
48
 
49
  # Define training arguments
50
  training_args = TrainingArguments(
51
- output_dir="/tmp/t5-finetuned",
52
- per_device_train_batch_size=1,
53
- per_device_eval_batch_size=1,
54
- num_train_epochs=1, # βœ… Train for 1 epoch only
55
- gradient_accumulation_steps=2, # βœ… Reduce steps to speed up
56
- logging_steps=100, # βœ… Log less frequently
57
- save_steps=500, # βœ… Save less frequently
58
  evaluation_strategy="epoch",
59
  save_strategy="epoch",
60
- push_to_hub=False,
 
 
 
 
 
 
61
  fp16=True
62
  )
63
 
 
64
  # Set up Trainer
65
  trainer = Trainer(
66
  model=model,
 
6
  os.environ["HF_HOME"] = "/app/hf_cache"
7
  os.environ["HF_DATASETS_CACHE"] = "/app/hf_cache"
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
9
+ osave_dir = "./models/t5-finetuned"
10
+ os.makedirs(save_dir, exist_ok=True) # Ensure the directory exists
11
+ trainer.save_model(save_dir)
12
+
13
  # Load dataset
14
  dataset = load_dataset("tatsu-lab/alpaca")
15
  dataset["train"] = dataset["train"].select(range(2000))
 
50
 
51
  # Define training arguments
52
  training_args = TrainingArguments(
53
+ output_dir="./results",
 
 
 
 
 
 
54
  evaluation_strategy="epoch",
55
  save_strategy="epoch",
56
+ learning_rate=5e-6, # Reduce from 5e-5 to 5e-6
57
+ per_device_train_batch_size=8, # Keep batch size reasonable
58
+ per_device_eval_batch_size=8,
59
+ num_train_epochs=3,
60
+ weight_decay=0.01,
61
+ logging_dir="./logs",
62
+ logging_steps=10,
63
  fp16=True
64
  )
65
 
66
+
67
  # Set up Trainer
68
  trainer = Trainer(
69
  model=model,