Update train.py
Browse files
train.py
CHANGED
@@ -9,7 +9,8 @@ os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
|
|
9 |
output_dir = "/tmp/t5-finetuned"
|
10 |
os.makedirs(output_dir, exist_ok=True)
|
11 |
# Load dataset
|
12 |
-
dataset = load_dataset("tatsu-lab/alpaca")
|
|
|
13 |
|
14 |
# Check dataset structure
|
15 |
print("Dataset splits available:", dataset)
|
@@ -48,15 +49,15 @@ print("Dataset successfully split and tokenized.")
|
|
48 |
# Define training arguments
|
49 |
training_args = TrainingArguments(
|
50 |
output_dir="/tmp/t5-finetuned",
|
51 |
-
per_device_train_batch_size=1,
|
52 |
-
per_device_eval_batch_size=1,
|
53 |
-
num_train_epochs=1, #
|
54 |
-
gradient_accumulation_steps=
|
55 |
-
logging_steps=
|
|
|
56 |
evaluation_strategy="epoch",
|
57 |
save_strategy="epoch",
|
58 |
push_to_hub=False,
|
59 |
-
fp16=False
|
60 |
)
|
61 |
|
62 |
# Set up Trainer
|
|
|
9 |
output_dir = "/tmp/t5-finetuned"
|
10 |
os.makedirs(output_dir, exist_ok=True)
|
11 |
# Load dataset
|
12 |
+
dataset = load_dataset("tatsu-lab/alpaca")
|
13 |
+
dataset["train"] = dataset["train"].select(range(5000))
|
14 |
|
15 |
# Check dataset structure
|
16 |
print("Dataset splits available:", dataset)
|
|
|
49 |
# Define training arguments
|
50 |
training_args = TrainingArguments(
|
51 |
output_dir="/tmp/t5-finetuned",
|
52 |
+
per_device_train_batch_size=1,
|
53 |
+
per_device_eval_batch_size=1,
|
54 |
+
num_train_epochs=1, # β
Train for 1 epoch only
|
55 |
+
gradient_accumulation_steps=2, # β
Reduce steps to speed up
|
56 |
+
logging_steps=100, # β
Log less frequently
|
57 |
+
save_steps=500, # β
Save less frequently
|
58 |
evaluation_strategy="epoch",
|
59 |
save_strategy="epoch",
|
60 |
push_to_hub=False,
|
|
|
61 |
)
|
62 |
|
63 |
# Set up Trainer
|