cconsti commited on
Commit
1d780ea
Β·
verified Β·
1 Parent(s): 43cdcc1

Update train.py

Browse files
Files changed (1) hide show
  1. train.py +8 -7
train.py CHANGED
@@ -9,7 +9,8 @@ os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
9
  output_dir = "/tmp/t5-finetuned"
10
  os.makedirs(output_dir, exist_ok=True)
11
  # Load dataset
12
- dataset = load_dataset("tatsu-lab/alpaca") # Change if using your dataset
 
13
 
14
  # Check dataset structure
15
  print("Dataset splits available:", dataset)
@@ -48,15 +49,15 @@ print("Dataset successfully split and tokenized.")
48
  # Define training arguments
49
  training_args = TrainingArguments(
50
  output_dir="/tmp/t5-finetuned",
51
- per_device_train_batch_size=1, # βœ… Reduce to 1 (was 2)
52
- per_device_eval_batch_size=1, # βœ… Reduce to 1
53
- num_train_epochs=1, # Test run (increase for full fine-tuning)
54
- gradient_accumulation_steps=4, # βœ… Helps simulate larger batch size
55
- logging_steps=50,
 
56
  evaluation_strategy="epoch",
57
  save_strategy="epoch",
58
  push_to_hub=False,
59
- fp16=False
60
  )
61
 
62
  # Set up Trainer
 
9
  output_dir = "/tmp/t5-finetuned"
10
  os.makedirs(output_dir, exist_ok=True)
11
  # Load dataset
12
+ dataset = load_dataset("tatsu-lab/alpaca")
13
+ dataset["train"] = dataset["train"].select(range(5000))
14
 
15
  # Check dataset structure
16
  print("Dataset splits available:", dataset)
 
49
  # Define training arguments
50
  training_args = TrainingArguments(
51
  output_dir="/tmp/t5-finetuned",
52
+ per_device_train_batch_size=1,
53
+ per_device_eval_batch_size=1,
54
+ num_train_epochs=1, # βœ… Train for 1 epoch only
55
+ gradient_accumulation_steps=2, # βœ… Reduce steps to speed up
56
+ logging_steps=100, # βœ… Log less frequently
57
+ save_steps=500, # βœ… Save less frequently
58
  evaluation_strategy="epoch",
59
  save_strategy="epoch",
60
  push_to_hub=False,
 
61
  )
62
 
63
  # Set up Trainer