ccibeekeoc42 commited on
Commit
9734753
Β·
verified Β·
1 Parent(s): 0019f2d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -62,7 +62,7 @@ def generate_llm_response(text, model_id="ccibeekeoc42/Llama3.1-8b-base-SFT-2024
62
  else:
63
  raise e
64
 
65
- generate_llm_response("Explain Deep Learning in Igbo")
66
 
67
 
68
  # Loading the ST Model (Whisper) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -186,11 +186,11 @@ def replace_numbers_with_words(text, lang="en"):
186
  # Replace all numbers in the text
187
  return re.sub(r'\b\d+\b', replace, text)
188
 
189
- llm_response = generate_llm_response("Explain Deep Learning in Igbo")
190
- llm_response_cleaned = normalize_text(cleanup_text(replace_numbers_with_words(llm_response, "yo"), "yo"))
191
 
192
- print(f"LLM Response: {llm_response}")
193
- print(f"LLM Response Cleaned: {llm_response_cleaned}")
194
 
195
  # returning spech from text (and bringing to CPU)
196
  def synthesise(text):
@@ -214,14 +214,17 @@ def speech_to_speech_translation(audio):
214
  print(f"Transcribed: {transcribed_text}")
215
 
216
  # Generate LLM Response
 
217
  llm_response = generate_llm_response(transcribed_text)
218
  llm_response_cleaned = normalize_text(cleanup_text(replace_numbers_with_words(llm_response, "yo"), "yo"))
219
  print(f"LLM Response: {llm_response}")
220
  print(f"LLM Response Cleaned: {llm_response_cleaned}")
221
 
222
  # Text to Speech
 
223
  synthesised_speech = synthesise(llm_response_cleaned)
224
  synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
 
225
 
226
  return transcribed_text, (16000, synthesised_speech), llm_response
227
 
 
62
  else:
63
  raise e
64
 
65
+ # generate_llm_response("Explain Deep Learning in Igbo")
66
 
67
 
68
  # Loading the ST Model (Whisper) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
186
  # Replace all numbers in the text
187
  return re.sub(r'\b\d+\b', replace, text)
188
 
189
+ # llm_response = generate_llm_response("Explain Deep Learning in Igbo")
190
+ # llm_response_cleaned = normalize_text(cleanup_text(replace_numbers_with_words(llm_response, "yo"), "yo"))
191
 
192
+ # print(f"LLM Response: {llm_response}")
193
+ # print(f"LLM Response Cleaned: {llm_response_cleaned}")
194
 
195
  # returning spech from text (and bringing to CPU)
196
  def synthesise(text):
 
214
  print(f"Transcribed: {transcribed_text}")
215
 
216
  # Generate LLM Response
217
+ print("Now making LLM Call ~~~~~~~~~~~~~~~~~~~~~~~~")
218
  llm_response = generate_llm_response(transcribed_text)
219
  llm_response_cleaned = normalize_text(cleanup_text(replace_numbers_with_words(llm_response, "yo"), "yo"))
220
  print(f"LLM Response: {llm_response}")
221
  print(f"LLM Response Cleaned: {llm_response_cleaned}")
222
 
223
  # Text to Speech
224
+ print("Synthesizing Speech ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
225
  synthesised_speech = synthesise(llm_response_cleaned)
226
  synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
227
+ print("Speech Synthesis Completed~~~~~~~~~~~~~~~~~~~")
228
 
229
  return transcribed_text, (16000, synthesised_speech), llm_response
230