import math from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F import utils from accelerate import Accelerator from accelerate.utils import ( DistributedDataParallelKwargs, ProjectConfiguration, set_seed, ) from diffusers import StableDiffusionXLPipeline from diffusers.image_processor import PipelineImageInput from diffusers.utils.torch_utils import is_compiled_module from losses import * # from peft import LoraConfig, set_peft_model_state_dict from tqdm import tqdm class ADPipeline(StableDiffusionXLPipeline): def freeze(self): self.unet.requires_grad_(False) self.text_encoder.requires_grad_(False) self.text_encoder_2.requires_grad_(False) self.vae.requires_grad_(False) self.classifier.requires_grad_(False) @torch.no_grad() def image2latent(self, image): dtype = next(self.vae.parameters()).dtype device = self._execution_device image = image.to(device=device, dtype=dtype) * 2.0 - 1.0 latent = self.vae.encode(image)["latent_dist"].mean latent = latent * self.vae.config.scaling_factor return latent @torch.no_grad() def latent2image(self, latent): dtype = next(self.vae.parameters()).dtype device = self._execution_device latent = latent.to(device=device, dtype=dtype) latent = latent / self.vae.config.scaling_factor image = self.vae.decode(latent)[0] return (image * 0.5 + 0.5).clamp(0, 1) def init(self, enable_gradient_checkpoint): self.freeze() weight_dtype = torch.float32 if self.accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif self.accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype self.unet.to(self.accelerator.device, dtype=weight_dtype) self.vae.to(self.accelerator.device, dtype=weight_dtype) self.text_encoder.to(self.accelerator.device, dtype=weight_dtype) self.text_encoder_2.to(self.accelerator.device, dtype=weight_dtype) self.classifier.to(self.accelerator.device, dtype=weight_dtype) self.classifier = self.accelerator.prepare(self.classifier) if enable_gradient_checkpoint: self.classifier.enable_gradient_checkpointing() # self.classifier.train() def sample( self, lr=0.05, iters=1, adain=True, controller=None, style_image=None, mixed_precision="no", init_from_style=False, start_time=999, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, clip_skip: Optional[int] = None, enable_gradient_checkpoint=False, **kwargs, ): # 0. Default height and width to unet height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._denoising_end = denoising_end self._interrupt = False self.accelerator = Accelerator( mixed_precision=mixed_precision, gradient_accumulation_steps=1 ) self.init(enable_gradient_checkpoint) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) null_add_time_ids = add_time_ids.to(device) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) else: negative_add_time_ids = add_time_ids if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat( [negative_pooled_prompt_embeds, add_text_embeds], dim=0 ) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat( batch_size * num_images_per_prompt, 1 ) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 8.1 Apply denoising_end if ( self.denoising_end is not None and isinstance(self.denoising_end, float) and self.denoising_end > 0 and self.denoising_end < 1 ): discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (self.denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len( list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) ) timesteps = timesteps[:num_inference_steps] # 9. Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( batch_size * num_images_per_prompt ) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) self.timestep_cond = timestep_cond (null_embeds, _, null_pooled_embeds, _) = self.encode_prompt("", device=device) added_cond_kwargs = { "text_embeds": add_text_embeds, "time_ids": add_time_ids } if ip_adapter_image is not None or ip_adapter_image_embeds is not None: added_cond_kwargs["image_embeds"] = image_embeds self.scheduler.set_timesteps(num_inference_steps) timesteps = self.scheduler.timesteps style_latent = self.image2latent(style_image) if init_from_style: latents = torch.cat([style_latent] * latents.shape[0]) noise = torch.randn_like(latents) latents = self.scheduler.add_noise( latents, noise, torch.tensor([999]), ) self.style_latent = style_latent self.null_embeds_for_latents = torch.cat([null_embeds] * (latents.shape[0])) self.null_embeds_for_style = torch.cat([null_embeds] * style_latent.shape[0]) self.null_added_cond_kwargs_for_latents = { "text_embeds": torch.cat([null_pooled_embeds] * (latents.shape[0])), "time_ids": torch.cat([null_add_time_ids] * (latents.shape[0])), } self.null_added_cond_kwargs_for_style = { "text_embeds": torch.cat([null_pooled_embeds] * style_latent.shape[0]), "time_ids": torch.cat([null_add_time_ids] * style_latent.shape[0]), } self.adain = adain self.cache = utils.DataCache() self.controller = controller utils.register_attn_control( self.classifier, controller=controller, cache=self.cache ) print("Total self attention layers of Unet: ", controller.num_self_layers) print("Self attention layers for AD: ", controller.self_layers) pbar = tqdm(timesteps, desc="Sample") for i, t in enumerate(pbar): with torch.no_grad(): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents ) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * ( noise_pred_text - noise_pred_uncond ) latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if iters > 0 and t < start_time: latents = self.AD(latents, t, lr, iters, pbar) # Offload all models # self.enable_model_cpu_offload() images = self.latent2image(latents) self.maybe_free_model_hooks() return images def AD(self, latents, t, lr, iters, pbar): t = max( t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, torch.tensor([0], device=self.device), ) if self.adain: noise = torch.randn_like(self.style_latent) style_latent = self.scheduler.add_noise(self.style_latent, noise, t) latents = utils.adain(latents, style_latent) with torch.no_grad(): qs_list, ks_list, vs_list, s_out_list = self.extract_feature( self.style_latent, t, self.null_embeds_for_style, self.timestep_cond, self.null_added_cond_kwargs_for_style, add_noise=True, ) # latents = latents.to(dtype=torch.float32) latents = latents.detach() optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) optimizer, latents = self.accelerator.prepare(optimizer, latents) for j in range(iters): optimizer.zero_grad() q_list, k_list, v_list, self_out_list = self.extract_feature( latents, t, self.null_embeds_for_latents, self.timestep_cond, self.null_added_cond_kwargs_for_latents, add_noise=False, ) loss = ad_loss(q_list, ks_list, vs_list, self_out_list) self.accelerator.backward(loss) optimizer.step() pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) latents = latents.detach() return latents def extract_feature( self, latent, t, encoder_hidden_states, timestep_cond, added_cond_kwargs, add_noise=False, ): self.cache.clear() self.controller.step() if add_noise: noise = torch.randn_like(latent) latent_ = self.scheduler.add_noise(latent, noise, t) else: latent_ = latent self.classifier( latent_, t, encoder_hidden_states=encoder_hidden_states, timestep_cond=timestep_cond, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] return self.cache.get()