Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import math | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import utils | |
from accelerate import Accelerator | |
from diffusers import StableDiffusionPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from losses import * | |
from tqdm import tqdm | |
class ADPipeline(StableDiffusionPipeline): | |
def freeze(self): | |
self.vae.requires_grad_(False) | |
self.unet.requires_grad_(False) | |
self.text_encoder.requires_grad_(False) | |
self.classifier.requires_grad_(False) | |
def image2latent(self, image): | |
dtype = next(self.vae.parameters()).dtype | |
device = self._execution_device | |
image = image.to(device=device, dtype=dtype) * 2.0 - 1.0 | |
latent = self.vae.encode(image)["latent_dist"].mean | |
latent = latent * self.vae.config.scaling_factor | |
return latent | |
def latent2image(self, latent): | |
dtype = next(self.vae.parameters()).dtype | |
device = self._execution_device | |
latent = latent.to(device=device, dtype=dtype) | |
latent = latent / self.vae.config.scaling_factor | |
image = self.vae.decode(latent)[0] | |
return (image * 0.5 + 0.5).clamp(0, 1) | |
def init(self, enable_gradient_checkpoint): | |
self.freeze() | |
weight_dtype = torch.float32 | |
if self.accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif self.accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
self.unet.to(self.accelerator.device, dtype=weight_dtype) | |
self.vae.to(self.accelerator.device, dtype=weight_dtype) | |
self.text_encoder.to(self.accelerator.device, dtype=weight_dtype) | |
self.classifier.to(self.accelerator.device, dtype=weight_dtype) | |
self.classifier = self.accelerator.prepare(self.classifier) | |
if enable_gradient_checkpoint: | |
self.classifier.enable_gradient_checkpointing() | |
def sample( | |
self, | |
lr=0.05, | |
iters=1, | |
attn_scale=1, | |
adain=False, | |
weight=0.25, | |
controller=None, | |
style_image=None, | |
content_image=None, | |
mixed_precision="no", | |
start_time=999, | |
enable_gradient_checkpoint=False, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
clip_skip: Optional[int] = None, | |
**kwargs, | |
): | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
self.accelerator = Accelerator( | |
mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
) | |
self.init(enable_gradient_checkpoint) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) | |
if self.cross_attention_kwargs is not None | |
else None | |
) | |
do_cfg = guidance_scale > 1.0 | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_cfg, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_cfg: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
do_cfg, | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
else None | |
) | |
# 6.2 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
batch_size * num_images_per_prompt | |
) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
self.scheduler.set_timesteps(num_inference_steps) | |
timesteps = self.scheduler.timesteps | |
self.style_latent = self.image2latent(style_image) | |
if content_image is not None: | |
self.content_latent = self.image2latent(content_image) | |
else: | |
self.content_latent = None | |
null_embeds = self.encode_prompt("", device, 1, False)[0] | |
self.null_embeds = null_embeds | |
self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0]) | |
self.null_embeds_for_style = torch.cat( | |
[null_embeds] * self.style_latent.shape[0] | |
) | |
self.adain = adain | |
self.attn_scale = attn_scale | |
self.cache = utils.DataCache() | |
self.controller = controller | |
utils.register_attn_control( | |
self.classifier, controller=self.controller, cache=self.cache | |
) | |
print("Total self attention layers of Unet: ", controller.num_self_layers) | |
print("Self attention layers for AD: ", controller.self_layers) | |
pbar = tqdm(timesteps, desc="Sample") | |
for i, t in enumerate(pbar): | |
with torch.no_grad(): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_cfg else latents | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_cfg: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
latents = self.scheduler.step( | |
noise_pred, t, latents, return_dict=False | |
)[0] | |
if iters > 0 and t < start_time: | |
latents = self.AD(latents, t, lr, iters, pbar, weight) | |
images = self.latent2image(latents) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return images | |
def optimize( | |
self, | |
latents=None, | |
attn_scale=1.0, | |
lr=0.05, | |
iters=1, | |
weight=0, | |
width=512, | |
height=512, | |
batch_size=1, | |
controller=None, | |
style_image=None, | |
content_image=None, | |
mixed_precision="no", | |
num_inference_steps=50, | |
enable_gradient_checkpoint=False, | |
source_mask=None, | |
target_mask=None, | |
): | |
height = height // self.vae_scale_factor | |
width = width // self.vae_scale_factor | |
self.accelerator = Accelerator( | |
mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
) | |
self.init(enable_gradient_checkpoint) | |
style_latent = self.image2latent(style_image) | |
latents = torch.randn((batch_size, 4, height, width), device=self.device) | |
null_embeds = self.encode_prompt("", self.device, 1, False)[0] | |
null_embeds_for_latents = null_embeds.repeat(latents.shape[0], 1, 1) | |
null_embeds_for_style = null_embeds.repeat(style_latent.shape[0], 1, 1) | |
if content_image is not None: | |
content_latent = self.image2latent(content_image) | |
latents = torch.cat([content_latent.clone()] * batch_size) | |
null_embeds_for_content = null_embeds.repeat(content_latent.shape[0], 1, 1) | |
self.cache = utils.DataCache() | |
self.controller = controller | |
utils.register_attn_control( | |
self.classifier, controller=self.controller, cache=self.cache | |
) | |
print("Total self attention layers of Unet: ", controller.num_self_layers) | |
print("Self attention layers for AD: ", controller.self_layers) | |
self.scheduler.set_timesteps(num_inference_steps) | |
timesteps = self.scheduler.timesteps | |
latents = latents.detach().float() | |
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
optimizer = self.accelerator.prepare(optimizer) | |
pbar = tqdm(timesteps, desc="Optimize") | |
for i, t in enumerate(pbar): | |
# t = torch.tensor([1], device=self.device) | |
with torch.no_grad(): | |
qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
style_latent, | |
t, | |
null_embeds_for_style, | |
) | |
if content_image is not None: | |
qc_list, kc_list, vc_list, c_out_list = self.extract_feature( | |
content_latent, | |
t, | |
null_embeds_for_content, | |
) | |
for j in range(iters): | |
style_loss = 0 | |
content_loss = 0 | |
optimizer.zero_grad() | |
q_list, k_list, v_list, self_out_list = self.extract_feature( | |
latents, | |
t, | |
null_embeds_for_latents, | |
) | |
style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=attn_scale, source_mask=source_mask, target_mask=target_mask) | |
if content_image is not None: | |
content_loss = q_loss(q_list, qc_list) | |
# content_loss = qk_loss(q_list, k_list, qc_list, kc_list) | |
# content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list) | |
loss = style_loss + content_loss * weight | |
self.accelerator.backward(loss) | |
optimizer.step() | |
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
images = self.latent2image(latents) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return images | |
def panorama( | |
self, | |
lr=0.05, | |
iters=1, | |
attn_scale=1, | |
adain=False, | |
controller=None, | |
style_image=None, | |
mixed_precision="no", | |
enable_gradient_checkpoint=False, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 1, | |
stride=8, | |
view_batch_size: int = 16, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
clip_skip: Optional[int] = None, | |
**kwargs, | |
): | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
self.accelerator = Accelerator( | |
mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
) | |
self.init(enable_gradient_checkpoint) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_cfg = guidance_scale > 1.0 | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) | |
if cross_attention_kwargs is not None | |
else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_cfg, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_cfg: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Define panorama grid and initialize views for synthesis. | |
# prepare batch grid | |
views = self.get_views_(height, width, window_size=64, stride=stride) | |
views_batch = [ | |
views[i : i + view_batch_size] | |
for i in range(0, len(views), view_batch_size) | |
] | |
print(len(views), len(views_batch), views_batch) | |
self.scheduler.set_timesteps(num_inference_steps) | |
views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len( | |
views_batch | |
) | |
count = torch.zeros_like(latents) | |
value = torch.zeros_like(latents) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 7.2 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
batch_size * num_images_per_prompt | |
) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 8. Denoising loop | |
# Each denoising step also includes refinement of the latents with respect to the | |
# views. | |
timesteps = self.scheduler.timesteps | |
self.style_latent = self.image2latent(style_image) | |
self.content_latent = None | |
null_embeds = self.encode_prompt("", device, 1, False)[0] | |
self.null_embeds = null_embeds | |
self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0]) | |
self.null_embeds_for_style = torch.cat( | |
[null_embeds] * self.style_latent.shape[0] | |
) | |
self.adain = adain | |
self.attn_scale = attn_scale | |
self.cache = utils.DataCache() | |
self.controller = controller | |
utils.register_attn_control( | |
self.classifier, controller=self.controller, cache=self.cache | |
) | |
print("Total self attention layers of Unet: ", controller.num_self_layers) | |
print("Self attention layers for AD: ", controller.self_layers) | |
pbar = tqdm(timesteps, desc="Sample") | |
for i, t in enumerate(pbar): | |
count.zero_() | |
value.zero_() | |
# generate views | |
# Here, we iterate through different spatial crops of the latents and denoise them. These | |
# denoised (latent) crops are then averaged to produce the final latent | |
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the | |
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113 | |
# Batch views denoise | |
for j, batch_view in enumerate(views_batch): | |
vb_size = len(batch_view) | |
# get the latents corresponding to the current view coordinates | |
latents_for_view = torch.cat( | |
[ | |
latents[:, :, h_start:h_end, w_start:w_end] | |
for h_start, h_end, w_start, w_end in batch_view | |
] | |
) | |
# rematch block's scheduler status | |
self.scheduler.__dict__.update(views_scheduler_status[j]) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
latents_for_view.repeat_interleave(2, dim=0) | |
if do_cfg | |
else latents_for_view | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# repeat prompt_embeds for batch | |
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds_input, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
).sample | |
# perform guidance | |
if do_cfg: | |
noise_pred_uncond, noise_pred_text = ( | |
noise_pred[::2], | |
noise_pred[1::2], | |
) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_denoised_batch = self.scheduler.step( | |
noise_pred, t, latents_for_view, **extra_step_kwargs | |
).prev_sample | |
if iters > 0: | |
self.null_embeds_for_latents = torch.cat( | |
[self.null_embeds] * noise_pred.shape[0] | |
) | |
latents_denoised_batch = self.AD( | |
latents_denoised_batch, t, lr, iters, pbar | |
) | |
# save views scheduler status after sample | |
views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__) | |
# extract value from batch | |
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( | |
latents_denoised_batch.chunk(vb_size), batch_view | |
): | |
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised | |
count[:, :, h_start:h_end, w_start:w_end] += 1 | |
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 | |
latents = torch.where(count > 0, value / count, value) | |
images = self.latent2image(latents) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return images | |
def AD(self, latents, t, lr, iters, pbar, weight=0): | |
t = max( | |
t | |
- self.scheduler.config.num_train_timesteps | |
// self.scheduler.num_inference_steps, | |
torch.tensor([0], device=self.device), | |
) | |
if self.adain: | |
noise = torch.randn_like(self.style_latent) | |
style_latent = self.scheduler.add_noise(self.style_latent, noise, t) | |
latents = utils.adain(latents, style_latent) | |
with torch.no_grad(): | |
qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
self.style_latent, | |
t, | |
self.null_embeds_for_style, | |
add_noise=True, | |
) | |
if self.content_latent is not None: | |
qc_list, kc_list, vc_list, c_out_list = self.extract_feature( | |
self.content_latent, | |
t, | |
self.null_embeds, | |
add_noise=True, | |
) | |
latents = latents.detach() | |
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
optimizer = self.accelerator.prepare(optimizer) | |
for j in range(iters): | |
style_loss = 0 | |
content_loss = 0 | |
optimizer.zero_grad() | |
q_list, k_list, v_list, self_out_list = self.extract_feature( | |
latents, | |
t, | |
self.null_embeds_for_latents, | |
add_noise=False, | |
) | |
style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=self.attn_scale) | |
if self.content_latent is not None: | |
content_loss = q_loss(q_list, qc_list) | |
# content_loss = qk_loss(q_list, k_list, qc_list, kc_list) | |
# content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list) | |
loss = style_loss + content_loss * weight | |
self.accelerator.backward(loss) | |
optimizer.step() | |
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
latents = latents.detach() | |
return latents | |
def extract_feature( | |
self, | |
latent, | |
t, | |
embeds, | |
add_noise=False, | |
): | |
self.cache.clear() | |
self.controller.step() | |
if add_noise: | |
noise = torch.randn_like(latent) | |
latent_ = self.scheduler.add_noise(latent, noise, t) | |
else: | |
latent_ = latent | |
_ = self.classifier(latent_, t, embeds)[0] | |
return self.cache.get() | |
def get_views_( | |
self, | |
panorama_height: int, | |
panorama_width: int, | |
window_size: int = 64, | |
stride: int = 8, | |
) -> List[Tuple[int, int, int, int]]: | |
panorama_height //= 8 | |
panorama_width //= 8 | |
num_blocks_height = ( | |
math.ceil((panorama_height - window_size) / stride) + 1 | |
if panorama_height > window_size | |
else 1 | |
) | |
num_blocks_width = ( | |
math.ceil((panorama_width - window_size) / stride) + 1 | |
if panorama_width > window_size | |
else 1 | |
) | |
views = [] | |
for i in range(int(num_blocks_height)): | |
for j in range(int(num_blocks_width)): | |
h_start = int(min(i * stride, panorama_height - window_size)) | |
w_start = int(min(j * stride, panorama_width - window_size)) | |
h_end = h_start + window_size | |
w_end = w_start + window_size | |
views.append((h_start, h_end, w_start, w_end)) | |
return views | |