AttentionDistillation / pipeline_sd.py
ccchenzc's picture
Init demo.
f2f17f4
raw
history blame
27.6 kB
import copy
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import utils
from accelerate import Accelerator
from diffusers import StableDiffusionPipeline
from diffusers.image_processor import PipelineImageInput
from losses import *
from tqdm import tqdm
class ADPipeline(StableDiffusionPipeline):
def freeze(self):
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.classifier.requires_grad_(False)
@torch.no_grad()
def image2latent(self, image):
dtype = next(self.vae.parameters()).dtype
device = self._execution_device
image = image.to(device=device, dtype=dtype) * 2.0 - 1.0
latent = self.vae.encode(image)["latent_dist"].mean
latent = latent * self.vae.config.scaling_factor
return latent
@torch.no_grad()
def latent2image(self, latent):
dtype = next(self.vae.parameters()).dtype
device = self._execution_device
latent = latent.to(device=device, dtype=dtype)
latent = latent / self.vae.config.scaling_factor
image = self.vae.decode(latent)[0]
return (image * 0.5 + 0.5).clamp(0, 1)
def init(self, enable_gradient_checkpoint):
self.freeze()
weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
self.unet.to(self.accelerator.device, dtype=weight_dtype)
self.vae.to(self.accelerator.device, dtype=weight_dtype)
self.text_encoder.to(self.accelerator.device, dtype=weight_dtype)
self.classifier.to(self.accelerator.device, dtype=weight_dtype)
self.classifier = self.accelerator.prepare(self.classifier)
if enable_gradient_checkpoint:
self.classifier.enable_gradient_checkpointing()
def sample(
self,
lr=0.05,
iters=1,
attn_scale=1,
adain=False,
weight=0.25,
controller=None,
style_image=None,
content_image=None,
mixed_precision="no",
start_time=999,
enable_gradient_checkpoint=False,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
**kwargs,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
self.accelerator = Accelerator(
mixed_precision=mixed_precision, gradient_accumulation_steps=1
)
self.init(enable_gradient_checkpoint)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
do_cfg = guidance_scale > 1.0
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_cfg,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_cfg:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
do_cfg,
)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
else None
)
# 6.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
self.style_latent = self.image2latent(style_image)
if content_image is not None:
self.content_latent = self.image2latent(content_image)
else:
self.content_latent = None
null_embeds = self.encode_prompt("", device, 1, False)[0]
self.null_embeds = null_embeds
self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0])
self.null_embeds_for_style = torch.cat(
[null_embeds] * self.style_latent.shape[0]
)
self.adain = adain
self.attn_scale = attn_scale
self.cache = utils.DataCache()
self.controller = controller
utils.register_attn_control(
self.classifier, controller=self.controller, cache=self.cache
)
print("Total self attention layers of Unet: ", controller.num_self_layers)
print("Self attention layers for AD: ", controller.self_layers)
pbar = tqdm(timesteps, desc="Sample")
for i, t in enumerate(pbar):
with torch.no_grad():
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_cfg else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_cfg:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = self.scheduler.step(
noise_pred, t, latents, return_dict=False
)[0]
if iters > 0 and t < start_time:
latents = self.AD(latents, t, lr, iters, pbar, weight)
images = self.latent2image(latents)
# Offload all models
self.maybe_free_model_hooks()
return images
def optimize(
self,
latents=None,
attn_scale=1.0,
lr=0.05,
iters=1,
weight=0,
width=512,
height=512,
batch_size=1,
controller=None,
style_image=None,
content_image=None,
mixed_precision="no",
num_inference_steps=50,
enable_gradient_checkpoint=False,
source_mask=None,
target_mask=None,
):
height = height // self.vae_scale_factor
width = width // self.vae_scale_factor
self.accelerator = Accelerator(
mixed_precision=mixed_precision, gradient_accumulation_steps=1
)
self.init(enable_gradient_checkpoint)
style_latent = self.image2latent(style_image)
latents = torch.randn((batch_size, 4, height, width), device=self.device)
null_embeds = self.encode_prompt("", self.device, 1, False)[0]
null_embeds_for_latents = null_embeds.repeat(latents.shape[0], 1, 1)
null_embeds_for_style = null_embeds.repeat(style_latent.shape[0], 1, 1)
if content_image is not None:
content_latent = self.image2latent(content_image)
latents = torch.cat([content_latent.clone()] * batch_size)
null_embeds_for_content = null_embeds.repeat(content_latent.shape[0], 1, 1)
self.cache = utils.DataCache()
self.controller = controller
utils.register_attn_control(
self.classifier, controller=self.controller, cache=self.cache
)
print("Total self attention layers of Unet: ", controller.num_self_layers)
print("Self attention layers for AD: ", controller.self_layers)
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
latents = latents.detach().float()
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr)
optimizer = self.accelerator.prepare(optimizer)
pbar = tqdm(timesteps, desc="Optimize")
for i, t in enumerate(pbar):
# t = torch.tensor([1], device=self.device)
with torch.no_grad():
qs_list, ks_list, vs_list, s_out_list = self.extract_feature(
style_latent,
t,
null_embeds_for_style,
)
if content_image is not None:
qc_list, kc_list, vc_list, c_out_list = self.extract_feature(
content_latent,
t,
null_embeds_for_content,
)
for j in range(iters):
style_loss = 0
content_loss = 0
optimizer.zero_grad()
q_list, k_list, v_list, self_out_list = self.extract_feature(
latents,
t,
null_embeds_for_latents,
)
style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=attn_scale, source_mask=source_mask, target_mask=target_mask)
if content_image is not None:
content_loss = q_loss(q_list, qc_list)
# content_loss = qk_loss(q_list, k_list, qc_list, kc_list)
# content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list)
loss = style_loss + content_loss * weight
self.accelerator.backward(loss)
optimizer.step()
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j)
images = self.latent2image(latents)
# Offload all models
self.maybe_free_model_hooks()
return images
def panorama(
self,
lr=0.05,
iters=1,
attn_scale=1,
adain=False,
controller=None,
style_image=None,
mixed_precision="no",
enable_gradient_checkpoint=False,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 1,
stride=8,
view_batch_size: int = 16,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
**kwargs,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
self.accelerator = Accelerator(
mixed_precision=mixed_precision, gradient_accumulation_steps=1
)
self.init(enable_gradient_checkpoint)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_cfg = guidance_scale > 1.0
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None)
if cross_attention_kwargs is not None
else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_cfg,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_cfg:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Define panorama grid and initialize views for synthesis.
# prepare batch grid
views = self.get_views_(height, width, window_size=64, stride=stride)
views_batch = [
views[i : i + view_batch_size]
for i in range(0, len(views), view_batch_size)
]
print(len(views), len(views_batch), views_batch)
self.scheduler.set_timesteps(num_inference_steps)
views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(
views_batch
)
count = torch.zeros_like(latents)
value = torch.zeros_like(latents)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
else None
)
# 7.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 8. Denoising loop
# Each denoising step also includes refinement of the latents with respect to the
# views.
timesteps = self.scheduler.timesteps
self.style_latent = self.image2latent(style_image)
self.content_latent = None
null_embeds = self.encode_prompt("", device, 1, False)[0]
self.null_embeds = null_embeds
self.null_embeds_for_latents = torch.cat([null_embeds] * latents.shape[0])
self.null_embeds_for_style = torch.cat(
[null_embeds] * self.style_latent.shape[0]
)
self.adain = adain
self.attn_scale = attn_scale
self.cache = utils.DataCache()
self.controller = controller
utils.register_attn_control(
self.classifier, controller=self.controller, cache=self.cache
)
print("Total self attention layers of Unet: ", controller.num_self_layers)
print("Self attention layers for AD: ", controller.self_layers)
pbar = tqdm(timesteps, desc="Sample")
for i, t in enumerate(pbar):
count.zero_()
value.zero_()
# generate views
# Here, we iterate through different spatial crops of the latents and denoise them. These
# denoised (latent) crops are then averaged to produce the final latent
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
# Batch views denoise
for j, batch_view in enumerate(views_batch):
vb_size = len(batch_view)
# get the latents corresponding to the current view coordinates
latents_for_view = torch.cat(
[
latents[:, :, h_start:h_end, w_start:w_end]
for h_start, h_end, w_start, w_end in batch_view
]
)
# rematch block's scheduler status
self.scheduler.__dict__.update(views_scheduler_status[j])
# expand the latents if we are doing classifier free guidance
latent_model_input = (
latents_for_view.repeat_interleave(2, dim=0)
if do_cfg
else latents_for_view
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# repeat prompt_embeds for batch
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
timestep_cond=timestep_cond,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
if do_cfg:
noise_pred_uncond, noise_pred_text = (
noise_pred[::2],
noise_pred[1::2],
)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents_denoised_batch = self.scheduler.step(
noise_pred, t, latents_for_view, **extra_step_kwargs
).prev_sample
if iters > 0:
self.null_embeds_for_latents = torch.cat(
[self.null_embeds] * noise_pred.shape[0]
)
latents_denoised_batch = self.AD(
latents_denoised_batch, t, lr, iters, pbar
)
# save views scheduler status after sample
views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__)
# extract value from batch
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
latents_denoised_batch.chunk(vb_size), batch_view
):
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
count[:, :, h_start:h_end, w_start:w_end] += 1
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
latents = torch.where(count > 0, value / count, value)
images = self.latent2image(latents)
# Offload all models
self.maybe_free_model_hooks()
return images
def AD(self, latents, t, lr, iters, pbar, weight=0):
t = max(
t
- self.scheduler.config.num_train_timesteps
// self.scheduler.num_inference_steps,
torch.tensor([0], device=self.device),
)
if self.adain:
noise = torch.randn_like(self.style_latent)
style_latent = self.scheduler.add_noise(self.style_latent, noise, t)
latents = utils.adain(latents, style_latent)
with torch.no_grad():
qs_list, ks_list, vs_list, s_out_list = self.extract_feature(
self.style_latent,
t,
self.null_embeds_for_style,
add_noise=True,
)
if self.content_latent is not None:
qc_list, kc_list, vc_list, c_out_list = self.extract_feature(
self.content_latent,
t,
self.null_embeds,
add_noise=True,
)
latents = latents.detach()
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr)
optimizer = self.accelerator.prepare(optimizer)
for j in range(iters):
style_loss = 0
content_loss = 0
optimizer.zero_grad()
q_list, k_list, v_list, self_out_list = self.extract_feature(
latents,
t,
self.null_embeds_for_latents,
add_noise=False,
)
style_loss = ad_loss(q_list, ks_list, vs_list, self_out_list, scale=self.attn_scale)
if self.content_latent is not None:
content_loss = q_loss(q_list, qc_list)
# content_loss = qk_loss(q_list, k_list, qc_list, kc_list)
# content_loss = qkv_loss(q_list, k_list, vc_list, c_out_list)
loss = style_loss + content_loss * weight
self.accelerator.backward(loss)
optimizer.step()
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j)
latents = latents.detach()
return latents
def extract_feature(
self,
latent,
t,
embeds,
add_noise=False,
):
self.cache.clear()
self.controller.step()
if add_noise:
noise = torch.randn_like(latent)
latent_ = self.scheduler.add_noise(latent, noise, t)
else:
latent_ = latent
_ = self.classifier(latent_, t, embeds)[0]
return self.cache.get()
def get_views_(
self,
panorama_height: int,
panorama_width: int,
window_size: int = 64,
stride: int = 8,
) -> List[Tuple[int, int, int, int]]:
panorama_height //= 8
panorama_width //= 8
num_blocks_height = (
math.ceil((panorama_height - window_size) / stride) + 1
if panorama_height > window_size
else 1
)
num_blocks_width = (
math.ceil((panorama_width - window_size) / stride) + 1
if panorama_width > window_size
else 1
)
views = []
for i in range(int(num_blocks_height)):
for j in range(int(num_blocks_width)):
h_start = int(min(i * stride, panorama_height - window_size))
w_start = int(min(j * stride, panorama_width - window_size))
h_end = h_start + window_size
w_end = w_start + window_size
views.append((h_start, h_end, w_start, w_end))
return views