Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,130 Bytes
f2f17f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import utils
from accelerate import Accelerator
from accelerate.utils import (
DistributedDataParallelKwargs,
ProjectConfiguration,
set_seed,
)
from diffusers import StableDiffusionXLPipeline
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import is_compiled_module
from losses import *
# from peft import LoraConfig, set_peft_model_state_dict
from tqdm import tqdm
class ADPipeline(StableDiffusionXLPipeline):
def freeze(self):
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.text_encoder_2.requires_grad_(False)
self.vae.requires_grad_(False)
self.classifier.requires_grad_(False)
@torch.no_grad()
def image2latent(self, image):
dtype = next(self.vae.parameters()).dtype
device = self._execution_device
image = image.to(device=device, dtype=dtype) * 2.0 - 1.0
latent = self.vae.encode(image)["latent_dist"].mean
latent = latent * self.vae.config.scaling_factor
return latent
@torch.no_grad()
def latent2image(self, latent):
dtype = next(self.vae.parameters()).dtype
device = self._execution_device
latent = latent.to(device=device, dtype=dtype)
latent = latent / self.vae.config.scaling_factor
image = self.vae.decode(latent)[0]
return (image * 0.5 + 0.5).clamp(0, 1)
def init(self, enable_gradient_checkpoint):
self.freeze()
weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
self.unet.to(self.accelerator.device, dtype=weight_dtype)
self.vae.to(self.accelerator.device, dtype=weight_dtype)
self.text_encoder.to(self.accelerator.device, dtype=weight_dtype)
self.text_encoder_2.to(self.accelerator.device, dtype=weight_dtype)
self.classifier.to(self.accelerator.device, dtype=weight_dtype)
self.classifier = self.accelerator.prepare(self.classifier)
if enable_gradient_checkpoint:
self.classifier.enable_gradient_checkpointing()
# self.classifier.train()
def sample(
self,
lr=0.05,
iters=1,
adain=True,
controller=None,
style_image=None,
mixed_precision="no",
init_from_style=False,
start_time=999,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
enable_gradient_checkpoint=False,
**kwargs,
):
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._interrupt = False
self.accelerator = Accelerator(
mixed_precision=mixed_precision, gradient_accumulation_steps=1
)
self.init(enable_gradient_checkpoint)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
null_add_time_ids = add_time_ids.to(device)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat(
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(
batch_size * num_images_per_prompt, 1
)
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 8.1 Apply denoising_end
if (
self.denoising_end is not None
and isinstance(self.denoising_end, float)
and self.denoising_end > 0
and self.denoising_end < 1
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
)
timesteps = timesteps[:num_inference_steps]
# 9. Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self.timestep_cond = timestep_cond
(null_embeds, _, null_pooled_embeds, _) = self.encode_prompt("", device=device)
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids
}
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
added_cond_kwargs["image_embeds"] = image_embeds
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
style_latent = self.image2latent(style_image)
if init_from_style:
latents = torch.cat([style_latent] * latents.shape[0])
noise = torch.randn_like(latents)
latents = self.scheduler.add_noise(
latents,
noise,
torch.tensor([999]),
)
self.style_latent = style_latent
self.null_embeds_for_latents = torch.cat([null_embeds] * (latents.shape[0]))
self.null_embeds_for_style = torch.cat([null_embeds] * style_latent.shape[0])
self.null_added_cond_kwargs_for_latents = {
"text_embeds": torch.cat([null_pooled_embeds] * (latents.shape[0])),
"time_ids": torch.cat([null_add_time_ids] * (latents.shape[0])),
}
self.null_added_cond_kwargs_for_style = {
"text_embeds": torch.cat([null_pooled_embeds] * style_latent.shape[0]),
"time_ids": torch.cat([null_add_time_ids] * style_latent.shape[0]),
}
self.adain = adain
self.cache = utils.DataCache()
self.controller = controller
utils.register_attn_control(
self.classifier, controller=controller, cache=self.cache
)
print("Total self attention layers of Unet: ", controller.num_self_layers)
print("Self attention layers for AD: ", controller.self_layers)
pbar = tqdm(timesteps, desc="Sample")
for i, t in enumerate(pbar):
with torch.no_grad():
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2)
if self.do_classifier_free_guidance
else latents
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if iters > 0 and t < start_time:
latents = self.AD(latents, t, lr, iters, pbar)
# Offload all models
# self.enable_model_cpu_offload()
images = self.latent2image(latents)
self.maybe_free_model_hooks()
return images
def AD(self, latents, t, lr, iters, pbar):
t = max(
t
- self.scheduler.config.num_train_timesteps
// self.scheduler.num_inference_steps,
torch.tensor([0], device=self.device),
)
if self.adain:
noise = torch.randn_like(self.style_latent)
style_latent = self.scheduler.add_noise(self.style_latent, noise, t)
latents = utils.adain(latents, style_latent)
with torch.no_grad():
qs_list, ks_list, vs_list, s_out_list = self.extract_feature(
self.style_latent,
t,
self.null_embeds_for_style,
self.timestep_cond,
self.null_added_cond_kwargs_for_style,
add_noise=True,
)
# latents = latents.to(dtype=torch.float32)
latents = latents.detach()
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr)
optimizer, latents = self.accelerator.prepare(optimizer, latents)
for j in range(iters):
optimizer.zero_grad()
q_list, k_list, v_list, self_out_list = self.extract_feature(
latents,
t,
self.null_embeds_for_latents,
self.timestep_cond,
self.null_added_cond_kwargs_for_latents,
add_noise=False,
)
loss = ad_loss(q_list, ks_list, vs_list, self_out_list)
self.accelerator.backward(loss)
optimizer.step()
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j)
latents = latents.detach()
return latents
def extract_feature(
self,
latent,
t,
encoder_hidden_states,
timestep_cond,
added_cond_kwargs,
add_noise=False,
):
self.cache.clear()
self.controller.step()
if add_noise:
noise = torch.randn_like(latent)
latent_ = self.scheduler.add_noise(latent, noise, t)
else:
latent_ = latent
self.classifier(
latent_,
t,
encoder_hidden_states=encoder_hidden_states,
timestep_cond=timestep_cond,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
return self.cache.get()
|