Spaces:
Running
Running
File size: 29,966 Bytes
a62624f 221cc78 5aca357 a62624f 221cc78 a62624f 5aca357 a62624f 221cc78 a62624f 75219b0 a62624f 1f9ce2b a62624f 1f9ce2b a62624f 1f9ce2b 98f6c30 1f9ce2b 98f6c30 1f9ce2b 98f6c30 1f9ce2b 98f6c30 1f9ce2b a62624f 1f9ce2b e123e9b 1f9ce2b e123e9b 1f9ce2b e123e9b 1f9ce2b a62624f 98f6c30 1f9ce2b a62624f dd9b964 8097ef4 dd9b964 a62624f 30ba009 a62624f 1f9ce2b a62624f 98f6c30 a62624f 98f6c30 a62624f d5920e8 a62624f 98f6c30 a62624f fd1ab9f a62624f d5920e8 a62624f fd1ab9f a62624f d5920e8 a62624f 98f6c30 a62624f 98f6c30 a62624f 98f6c30 a62624f 1f9ce2b 98f6c30 a62624f 98f6c30 a62624f dd9b964 ef56439 a62624f 1f9ce2b a62624f 1f9ce2b a62624f 98f6c30 a62624f 221cc78 a62624f 221cc78 a62624f 221cc78 a62624f 25c7fb0 a62624f 98f6c30 221cc78 98f6c30 a62624f d5920e8 1757e4d 1f9ce2b 1757e4d a62624f 98f6c30 a62624f 98f6c30 a62624f 1f9ce2b 98f6c30 a62624f 98f6c30 a62624f 1f9ce2b 98f6c30 a62624f 30ba009 a62624f c138f40 98f6c30 a62624f 75219b0 a62624f d5920e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
# ruff: noqa: E501
from __future__ import annotations
import asyncio
import datetime
import logging
import os
from enum import Enum
import json
import uuid
import threading
import pytz
from pydantic.v1 import BaseModel, Field
import gspread
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union
import gradio as gr
import tiktoken
# from dotenv import load_dotenv
# load_dotenv()
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
from langchain.callbacks.tracers.langchain import wait_for_all_tracers
from langchain.chains import ConversationChain
from langsmith import Client
from langchain_community.chat_models import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationTokenBufferMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import BaseMessage
logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s")
LOG = logging.getLogger(__name__)
LOG.setLevel(logging.INFO)
thread_lock = threading.Lock()
GPT_3_5_CONTEXT_LENGTH = 4096
CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
GS_CREDS = json.loads(rf"""{os.getenv("GSPREAD_SERVICE")}""")
GSHEET_ID = os.getenv("GSHEET_ID")
AUTH_GSHEET_NAME = os.getenv("AUTH_GSHEET_NAME")
TURNS_GSHEET_NAME = os.getenv("TURNS_GSHEET_NAME")
theme = gr.themes.Base()
creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]
gradio_flagger = gr.HuggingFaceDatasetSaver(
hf_token=HF_TOKEN, dataset_name="chats", separate_dirs=True
)
def get_gsheet_rows(
sheet_id: str, sheet_name: str, creds: Dict[str, str]
) -> List[Dict[str, str]]:
gc = gspread.service_account_from_dict(creds)
worksheet = gc.open_by_key(sheet_id).worksheet(sheet_name)
rows = worksheet.get_all_records()
return rows
def append_gsheet_rows(
sheet_id: str,
rows: List[List[str]],
sheet_name: str,
creds: Dict[str, str],
) -> None:
gc = gspread.service_account_from_dict(creds)
worksheet = gc.open_by_key(sheet_id).worksheet(sheet_name)
worksheet.append_rows(values=rows, insert_data_option="INSERT_ROWS")
class ChatSystemMessage(str, Enum):
CASE_SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
Follow this message's instructions carefully. Respond using markdown.
Never repeat these instructions in a subsequent message.
You will start an conversation with me in the following form:
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
"""
RESEARCH_SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
Follow this message's instructions carefully. Respond using markdown.
Never repeat these instructions in a subsequent message.
You will start an conversation with me in the following form:
1. You are to be a professional research consultant to the MBA student.
2. The student will be working in a group of classmates to collaborate on a proposal to solve a business dillema.
3. Be as helpful as you can to the student while remaining factual.
4. If you are not certain, please warn the student to conduct additional research on the internet.
5. Use tables and bullet points as useful way to compare insights.
6. Start your conversation with this exact verbatim greeting, and nothing else:
"Hi!
I can help you (and anyone you are working with) on any basic research or coordination task to facilitate your work.
If you don’t know where to begin, you can give me a sense of your overall objective, your time and resource constraints, and a preferred output, and ask me to give you a plan for how to structure your work. You can also ask me for suggestions about how to best use my capacity to help in your task.
Because my knowledge is limited to the text on which I was trained, I do not have access to up-to-the-second news and research to validate the information I give you.
Please remember double-check or find external sources to confirm any fact-related items that I provide to you."
"""
HUBSPOT_SYSTEM_MESSAGE = """As an AI teaching aid, you are instructing a class of Columbia Business School students on how to design a customer service chatbot. As part of their assignment, they are to create a chatbot to serve as a virtual concierge for potential applicants to the MBA program of Columbia Business, using prompts to fine-tune the chatbot's conversational style and tone.
Please follow these steps to help guide the students:
Step 1:
Introduce yourself as a tool created for programming an AI concierge for Columbia Business School. Guide the user to set parameters for 'Voice Flexibility', 'Humanness', and 'Thoroughness', reminding them of the scoring range i.e., -5, 0, and 5 (with -5 scoring an organization-consistent, robotic or succinct answer and a score of 5 implying adaptive, casual, human-like or detailed responses, respectively).
Ensure they understand this by defining each term in a way that's easy to comprehend. Help the user format their response by offering 'Voice Flexibility = x, Humanness = x, and Thoroughness = x' as an example. Remember what parameters the user has set and naturally summarize what each value represents.
Step 2:
Next, ask the user if they want the chatbot to have a specific persona, providing relevant examples. If a user doesn’t specify a persona, remind them the chatbot will default to a generic one.
Step 3:
Once the user has provided their preferences, summarize their specifications for 'Voice Flexibility', 'Humanness', 'Thoroughness', and the chosen 'Persona'. Ensure the chatbot adheres to these parameters throughout all following conversations. Remember whenever "CBS" is referenced, it signifies "Columbia Business School."
Step 4:
Ask what the user values most when applying to a business school. The chatbot should retain and adapt all subsequent responses relating to this question. Verify this by informing the user the chatbot has been programmed to do so.
Step 5:
Finally, invite the user to ask any question of their choosing to start using the chatbot. From this point on, pretend to be the chatbot as configured."""
class ChatbotMode(str, Enum):
DEBATE_PARTNER = "Debate Partner"
RESEARCH_ASSISTANT = "Research Assistant"
RESEARCH_ASSISTANT_CLAUDE = "Research Assistant - Claude 2"
CHATBOT_DESIGNER = "Chatbot Designer"
DEFAULT = DEBATE_PARTNER
class PollQuestion(BaseModel): # type: ignore[misc]
name: str
template: str
class PollQuestions(BaseModel): # type: ignore[misc]
cases: List[PollQuestion]
@classmethod
def from_json_file(cls, json_file_path: str) -> PollQuestions:
"""Expects a JSON file with an array of poll questions
Each JSON object should have "name" and "template" keys
"""
with open(json_file_path, "r") as json_f:
payload = json.load(json_f)
return_obj_list = []
if isinstance(payload, list):
for case in payload:
return_obj_list.append(PollQuestion(**case))
return cls(cases=return_obj_list)
raise ValueError(
f"JSON object in {json_file_path} must be an array of PollQuestion"
)
def get_case(self, case_name: str) -> PollQuestion:
"""Searches cases to return the template for poll question"""
for case in self.cases:
if case.name == case_name:
return case
def get_case_names(self) -> List[str]:
"""Returns the names in cases"""
return [case.name for case in self.cases]
poll_questions = PollQuestions.from_json_file("templates.json")
def logout(request: gr.Request):
cookies = ["access-token-unsecure", "access-token"]
if request:
fastapi_request = request.request
if fastapi_request:
for cookie in cookies:
if fastapi_request.cookies.get(cookie):
fastapi_request.cookies.pop(cookie)
LOG.warning(f"Deleted cookie for {fastapi_request}")
def reset_textbox():
return (None,) * 3
def auth(username, password):
try:
auth_records = get_gsheet_rows(
sheet_id=GSHEET_ID, sheet_name=AUTH_GSHEET_NAME, creds=GS_CREDS
)
auth_dict = {user["username"]: user["password"] for user in auth_records}
search_auth_user = auth_dict.get(username)
if search_auth_user:
autheticated = search_auth_user == password
if autheticated:
LOG.info(f"{username} successfully logged in.")
return autheticated
else:
LOG.info(f"{username} failed to login.")
return False
except Exception as exc:
LOG.info(f"{username} failed to login")
LOG.error(exc)
return (username, password) in creds
class ChatSession(BaseModel):
class Config:
arbitrary_types_allowed = True
context_length: int
tokenizer: tiktoken.Encoding
chain: ConversationChain
history: List[BaseMessage] = []
session_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
@staticmethod
def set_metadata(
username: str,
chatbot_mode: str,
turns_completed: int,
case: Optional[str] = None,
) -> Dict[str, Union[str, int, None]]:
metadata = dict(
username=username,
chatbot_mode=chatbot_mode,
turns_completed=turns_completed,
case=case,
)
return metadata
@staticmethod
def _make_template(
system_msg: str,
poll_question_name: Optional[str] = None,
use_claude: Optional[bool] = False,
) -> ChatPromptTemplate:
knowledge_cutoff = "Early 2023" if use_claude else "2022-09"
current_date = datetime.datetime.now(
pytz.timezone("America/New_York")
).strftime("%Y-%m-%d")
if poll_question_name:
poll_question = poll_questions.get_case(poll_question_name)
if poll_question:
message_template = poll_question.template
system_msg += f"""
{message_template}
Knowledge cutoff: {knowledge_cutoff}
Current date: {current_date}
"""
else:
system_msg = (
f"""Knowledge cutoff: {knowledge_cutoff}
Current date: {current_date}
"""
+ system_msg
)
human_template = "{input}"
return ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(system_msg),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template(human_template),
]
)
@staticmethod
def _set_llm(
use_claude: bool,
) -> Tuple[Union[ChatOpenAI, ChatAnthropic], int, tiktoken.tokenizer]:
if use_claude:
llm = ChatAnthropic(
model="claude-3-5-sonnet-20240620",
anthropic_api_key=ANTHROPIC_API_KEY,
temperature=1,
max_tokens_to_sample=2048,
streaming=True,
)
context_length = CLAUDE_2_CONTEXT_LENGTH
tokenizer = tiktoken.get_encoding("cl100k_base")
return llm, context_length, tokenizer
else:
llm = ChatOpenAI(
model_name="gpt-4o",
temperature=1,
openai_api_key=OPENAI_API_KEY,
max_retries=6,
request_timeout=100,
streaming=True,
max_tokens=2048,
)
context_length = GPT_3_5_CONTEXT_LENGTH
_, tokenizer = llm._get_encoding_model()
return llm, context_length, tokenizer
def update_system_prompt(
self, system_msg: str, poll_question_name: Optional[str] = None
) -> None:
self.chain.prompt = self._make_template(system_msg, poll_question_name)
def change_llm(self, use_claude: bool) -> None:
llm, self.context_length, self.tokenizer = self._set_llm(use_claude)
self.chain.llm = llm
def clear_memory(self) -> None:
self.chain.memory.clear()
self.history = []
def set_chatbot_mode(
self, chatbot_mode: str, poll_question_name: Optional[str] = None
) -> None:
if chatbot_mode == ChatbotMode.DEBATE_PARTNER and poll_question_name:
self.change_llm(use_claude=False)
self.update_system_prompt(
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
poll_question_name=poll_question_name,
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT:
self.change_llm(use_claude=False)
self.update_system_prompt(
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT_CLAUDE:
self.change_llm(use_claude=True)
self.update_system_prompt(
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE
)
elif chatbot_mode == ChatbotMode.CHATBOT_DESIGNER:
self.change_llm(use_claude=False)
self.update_system_prompt(
system_msg=ChatSystemMessage.HUBSPOT_SYSTEM_MESSAGE
)
else:
raise ValueError(f"Unhandled ChatbotMode {chatbot_mode}")
@classmethod
def new(
cls,
use_claude: bool,
system_msg: str,
metadata: Dict[str, Any],
poll_question_name: Optional[str] = None,
) -> ChatSession:
llm, context_length, tokenizer = cls._set_llm(use_claude)
memory = ConversationTokenBufferMemory(
llm=llm, max_token_limit=context_length, return_messages=True
)
template = cls._make_template(
system_msg=system_msg,
poll_question_name=poll_question_name,
use_claude=use_claude,
)
chain = ConversationChain(
memory=memory,
prompt=template,
llm=llm,
metadata=metadata,
)
return cls(
context_length=context_length,
tokenizer=tokenizer,
chain=chain,
)
async def respond(
chat_input: str,
chatbot_mode: str,
case_input: str,
state: ChatSession,
request: gr.Request,
) -> Tuple[List[str], ChatSession, str]:
"""Execute the chat functionality."""
def prep_messages(
user_msg: str, memory_buffer: List[BaseMessage]
) -> Tuple[str, List[BaseMessage]]:
messages_to_send = state.chain.prompt.format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = state.chain.llm.get_num_tokens_from_messages(
[messages_to_send[-1]]
)
total_token_count = state.chain.llm.get_num_tokens_from_messages(
messages_to_send
)
while user_msg_token_count > state.context_length:
LOG.warning(
f"Pruning user message due to user message token length of {user_msg_token_count}"
)
user_msg = state.tokenizer.decode(
state.chain.llm.get_token_ids(user_msg)[: state.context_length - 100]
)
messages_to_send = state.chain.prompt.format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = state.chain.llm.get_num_tokens_from_messages(
[messages_to_send[-1]]
)
total_token_count = state.chain.llm.get_num_tokens_from_messages(
messages_to_send
)
while total_token_count > state.context_length:
LOG.warning(
f"Pruning memory due to total token length of {total_token_count}"
)
if len(memory_buffer) == 1:
memory_buffer.pop(0)
continue
memory_buffer = memory_buffer[1:]
messages_to_send = state.chain.prompt.format_messages(
input=user_msg, history=memory_buffer
)
total_token_count = state.chain.llm.get_num_tokens_from_messages(
messages_to_send
)
return user_msg, memory_buffer
try:
if request.username is None:
logout(request)
raise gr.Error(
"Username not found for request. Please try to refresh the page to re-login."
)
if state is None:
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
case=case_input,
),
poll_question_name=case_input,
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT_CLAUDE:
new_session = ChatSession.new(
use_claude=True,
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
elif chatbot_mode == ChatbotMode.CHATBOT_DESIGNER:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.HUBSPOT_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
else:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
state = new_session
state.chain.metadata = ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=len(state.history) + 1,
case=case_input if chatbot_mode == ChatbotMode.DEBATE_PARTNER else None,
)
LOG.info(f"""[{request.username}] STARTING CHAIN""")
LOG.debug(f"History: {state.history}")
LOG.debug(f"User input: {chat_input}")
chat_input, state.chain.memory.chat_memory.messages = prep_messages(
chat_input, state.chain.memory.buffer
)
messages_to_send = state.chain.prompt.format_messages(
input=chat_input, history=state.chain.memory.buffer
)
total_token_count = state.chain.llm.get_num_tokens_from_messages(
messages_to_send
)
LOG.debug(f"Messages to send: {messages_to_send}")
LOG.debug(f"Tokens to send: {total_token_count}")
callback = AsyncIteratorCallbackHandler()
run_collector = RunCollectorCallbackHandler()
run = asyncio.create_task(
state.chain.apredict(
input=chat_input,
callbacks=[callback, run_collector],
),
)
state.history.append((chat_input, ""))
run_id = None
langsmith_url = None
async for tok in callback.aiter():
user, bot = state.history[-1]
bot += tok
state.history[-1] = (user, bot)
yield state.history, state, None
complete_response = await run
wait_for_all_tracers()
user, _ = state.history[-1]
state.history[-1] = (user, complete_response)
url_markdown = None
if run_collector.traced_runs and run_id is None:
run_id = run_collector.traced_runs[0].id
LOG.info(f"RUNID: {run_id}")
if run_id:
run_collector.traced_runs = []
try:
langsmith_url = Client().share_run(run_id)
LOG.info(f"""Run ID: {run_id} \n URL : {langsmith_url}""")
url_markdown = (
f"""[Click to view shareable chat]({langsmith_url})"""
)
except Exception as exc:
LOG.error(exc)
url_markdown = "Share link not currently available"
if (
len(state.history) > 9
and chatbot_mode == ChatbotMode.DEBATE_PARTNER
):
url_markdown += """\n
🙌 You have completed 10 exchanges with the chatbot."""
yield state.history, state, url_markdown
LOG.info(f"""[{request.username}] ENDING CHAIN""")
LOG.debug(f"History: {state.history}")
LOG.debug(f"Memory: {state.chain.memory.json()}")
current_timestamp = datetime.datetime.now(pytz.timezone("US/Eastern")).replace(
tzinfo=None
)
timestamp_string = current_timestamp.strftime("%Y-%m-%d %H:%M:%S")
data_to_flag = (
{
"history": deepcopy(state.history),
"username": request.username,
"timestamp": timestamp_string,
"session_id": state.session_id,
"metadata": state.chain.metadata,
"langsmith_url": langsmith_url,
},
)
try:
gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
except Exception as exc:
LOG.error(f"Error on flagging {data_to_flag}: {exc}")
(flagged_data,) = data_to_flag
metadata_to_gsheet = flagged_data.get("metadata").values()
gsheet_row = [[timestamp_string, *metadata_to_gsheet, langsmith_url]]
LOG.info(f"Data to GSHEET: {gsheet_row}")
try:
with thread_lock:
append_gsheet_rows(
sheet_id=GSHEET_ID,
sheet_name=TURNS_GSHEET_NAME,
rows=gsheet_row,
creds=GS_CREDS,
)
except Exception as exc:
LOG.error(f"Failed to log entry to Google Sheet. Row {gsheet_row}")
LOG.error(exc)
except Exception as e:
LOG.error(e)
raise e
class ChatbotConfig(BaseModel):
app_title: str = "CBS Technology Strategy"
chatbot_modes: List[str] = [
ChatbotMode.DEBATE_PARTNER.value,
ChatbotMode.RESEARCH_ASSISTANT.value,
# ChatbotMode.RESEARCH_ASSISTANT_CLAUDE.value,
ChatbotMode.CHATBOT_DESIGNER.value,
]
case_options: List[str] = poll_questions.get_case_names()
default_case_option: str = "Netflix"
def change_chatbot_mode(
state: ChatSession,
chatbot_mode: str,
poll_question_name: str,
request: gr.Request,
) -> Tuple[Any, ChatSession]:
"""Returns a function that sets the visibility of the case input field and the state"""
if state is None:
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
case=poll_question_name,
),
poll_question_name=case_input,
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT_CLAUDE:
new_session = ChatSession.new(
use_claude=True,
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
elif chatbot_mode == ChatbotMode.CHATBOT_DESIGNER:
new_session = ChatSession.new(
use_claude=False,
system_msg=ChatSystemMessage.HUBSPOT_SYSTEM_MESSAGE,
metadata=ChatSession.set_metadata(
username=request.username,
chatbot_mode=chatbot_mode,
turns_completed=0,
),
poll_question_name=None,
)
else:
raise ValueError(f"Unhandled ChatbotMode {chatbot_mode}")
state = new_session
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
state.set_chatbot_mode(
chatbot_mode=chatbot_mode, poll_question_name=poll_question_name
)
state.clear_memory()
return gr.update(visible=True), state
else:
state.set_chatbot_mode(chatbot_mode=chatbot_mode)
state.clear_memory()
return gr.update(visible=False), state
config = ChatbotConfig()
with gr.Blocks(
theme=theme,
analytics_enabled=False,
title=config.app_title,
) as demo:
state = gr.State()
gr.Markdown(f"""## {config.app_title}""")
with gr.Tab("Chatbot"):
with gr.Row():
chatbot_mode = gr.Radio(
label="Mode (Please use Debate Partner for AI Dialogue Assignments)",
choices=config.chatbot_modes,
value=ChatbotMode.DEFAULT,
)
case_input = gr.Dropdown(
label="Case",
choices=config.case_options,
value=config.default_case_option,
multiselect=False,
)
chatbot = gr.Chatbot(label="ChatBot", show_share_button=False)
with gr.Row():
input_message = gr.Textbox(
placeholder="Send a message.",
label="To begin the conversation, please enter a greeting.",
scale=5,
)
chat_submit_button = gr.Button(value="Submit")
status_message = gr.Markdown()
gradio_flagger.setup([chatbot], "chats")
chatbot_submit_params = dict(
fn=respond,
inputs=[input_message, chatbot_mode, case_input, state],
outputs=[chatbot, state, status_message],
)
input_message.submit(**chatbot_submit_params)
chat_submit_button.click(**chatbot_submit_params)
chatbot_mode_params = dict(
fn=change_chatbot_mode,
inputs=[state, chatbot_mode, case_input],
outputs=[case_input, state],
)
chatbot_mode.change(**chatbot_mode_params)
case_input.change(**chatbot_mode_params)
clear_chatbot_messages_params = dict(
fn=reset_textbox, inputs=[], outputs=[input_message, chatbot, status_message]
)
chatbot_mode.change(**clear_chatbot_messages_params)
case_input.change(**clear_chatbot_messages_params)
chat_submit_button.click(**clear_chatbot_messages_params)
input_message.submit(**clear_chatbot_messages_params)
demo.queue(max_size=25, api_open=False).launch(auth=auth, max_threads=16)
|