Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,315 Bytes
e67f19a d68a8fc 9494751 e67f19a 33b5608 e67f19a 8ce7824 e67f19a 7792d1e e67f19a e528abc e67f19a d68a8fc e67f19a 659c8aa e528abc e67f19a 659c8aa e67f19a 273779b e67f19a 33b5608 e67f19a 33b5608 86a0c67 33b5608 e67f19a 33b5608 e67f19a 80754e9 e67f19a d100aeb e67f19a 33b5608 d100aeb 33b5608 d100aeb 33b5608 140a713 33b5608 aa34c9c 33b5608 bdfe6c6 e67f19a 33b5608 d100aeb e67f19a d68a8fc 273779b e67f19a e528abc d100aeb 33b5608 d100aeb 273779b b0a40d6 273779b e67f19a 140a713 aea6b1f 140a713 e67f19a 33b5608 e67f19a 33b5608 7792d1e 33b5608 7792d1e d100aeb e67f19a 33b5608 7792d1e 33b5608 e67f19a d1856b7 e67f19a fc88d1a d1856b7 e67f19a bd6dd54 e67f19a 33b5608 d1856b7 96a99df d1856b7 33b5608 25c898d fbfc277 33b5608 e67f19a 5422690 e67f19a 33b5608 e67f19a 9a5a36b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
import random
import uuid
from datetime import datetime
from diffusers import DiffusionPipeline
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
NUM_INFERENCE_STEPS = 8
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# Funciones auxiliares
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
processed_image = trellis_pipeline.preprocess_image(image)
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def generate_flux_image(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
req: gr.Request,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Image.Image:
"""Generate image using Flux pipeline"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
image = flux_pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=NUM_INFERENCE_STEPS,
width=width,
height=height,
generator=generator,
).images[0]
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(user_dir, filename)
image.save(filepath)
return image
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
# Interfaz Gradio
with gr.Blocks() as demo:
gr.Markdown("""
# UTPL - Conversi贸n de Texto a Imagen a objetos 3D usando IA
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
**Autor:** Carlos Vargas
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) y [FLUX](https://huggingface.co/camenduru/FLUX.1-dev-diffusers) (herramientas de c贸digo abierto para generaci贸n 3D)
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico
""")
with gr.Row():
with gr.Column():
# Flux image generation inputs
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
with gr.Row():
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
# Botones separados
generate_image_btn = gr.Button("Generar Imagen")
generate_video_btn = gr.Button("Generar Video", interactive=False)
with gr.Column():
generated_image = gr.Image(label="Generated Asset", type="pil")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
model_output = LitModel3D(label="Extracted GLB", exposure=8.0, height=400)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
# Variables adicionales para la generaci贸n 3D
with gr.Accordion("3D Generation Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
# Variables para la extracci贸n de GLB
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
output_buf = gr.State()
# Event handlers
demo.load(start_session)
demo.unload(end_session)
# Generar imagen
generate_image_btn.click(
generate_flux_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
outputs=[generated_image]
).then(
lambda: gr.Button(interactive=True),
outputs=[generate_video_btn],
)
# Generar video
generate_video_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
preprocess_image,
inputs=[generated_image],
outputs=[generated_image],
).then(
image_to_3d,
inputs=[
generated_image,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps
],
outputs=[output_buf, video_output],
).then(
lambda: gr.Button(interactive=True),
outputs=[extract_glb_btn],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[extract_glb_btn],
)
# Extraer GLB
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Initialize both pipelines
if __name__ == "__main__":
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
# Initialize Flux pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
if ".gguf" in file_url:
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
else:
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
flux_pipeline.to("cuda")
# Initialize Trellis pipeline
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
trellis_pipeline.cuda()
try:
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch(show_error=True) |