File size: 13,631 Bytes
9201ecc
3057b36
9201ecc
4595f09
db6a3b7
cd41f5f
a1a061b
 
6980cac
885fd1c
a1a061b
885fd1c
7ea9149
885fd1c
7ea9149
6980cac
db6a3b7
16fc781
db6a3b7
4595f09
6980cac
a1a061b
6980cac
a1a061b
 
 
4595f09
6980cac
 
9201ecc
 
 
 
 
 
 
 
 
 
6980cac
a1a061b
 
 
6980cac
 
9201ecc
6980cac
 
 
945c4e6
 
 
2cf8efe
a1a061b
 
 
6980cac
 
 
 
cd41f5f
 
 
9201ecc
cd41f5f
 
a1a061b
26d325e
6980cac
9201ecc
 
 
 
 
 
 
 
 
a1a061b
 
 
 
6980cac
 
 
 
 
 
 
 
a1a061b
9201ecc
a1a061b
9201ecc
b7b00e2
7c7ca7a
9880f3d
7c7ca7a
 
 
 
 
 
 
 
9880f3d
 
 
 
 
9201ecc
a1a061b
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7ca7a
ed6baf2
 
9880f3d
7c7ca7a
9880f3d
ed6baf2
 
 
3057b36
6980cac
 
 
 
 
 
 
 
 
cd41f5f
410cd67
57c3dcb
a1a061b
57c3dcb
44a6155
ed6baf2
6980cac
 
 
 
 
 
 
 
57c3dcb
44a6155
b7b00e2
f17c864
a1a061b
 
 
db6a3b7
b7b00e2
6980cac
 
 
 
 
a1a061b
cd41f5f
16fc781
a1a061b
ed6baf2
db6a3b7
a1a061b
 
7ea9149
44a6155
 
 
a1a061b
9201ecc
 
 
 
44a6155
9201ecc
6980cac
 
a1a061b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9201ecc
a1a061b
 
 
 
 
 
 
0407e4d
44a6155
0407e4d
6980cac
a1a061b
 
885fd1c
a1a061b
44a6155
6980cac
9201ecc
a1a061b
 
9201ecc
a1a061b
 
 
 
 
6980cac
a1a061b
 
6980cac
 
a1a061b
 
 
 
 
44a6155
 
 
6110d4e
6980cac
a1a061b
 
db6a3b7
44a6155
885fd1c
a1a061b
 
44a6155
885fd1c
f17c864
a1a061b
6980cac
a1a061b
 
 
44a6155
a1a061b
 
 
44a6155
a1a061b
 
9201ecc
db6a3b7
9201ecc
2e33d6c
 
 
6980cac
2e33d6c
 
 
 
6980cac
 
 
 
2e33d6c
 
6980cac
2e33d6c
 
 
 
 
9201ecc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import torchvision.transforms.functional as TF
import numpy as np
import random
import imageio
import cv2
from easydict import EasyDict as edict
from PIL import Image, ImageOps
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers.utils import load_image
from huggingface_hub import HfApi
from pathlib import Path
from gradio_imageslider import ImageSlider

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def reset_canvas():
    return gr.update(value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})

def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

@spaces.GPU
def preprocess_image(image: Image.Image, 
                    prompt: str = "",
                    negative_prompt: str = "",
                    style_name: str = "",
                    num_steps: int = 25,
                    guidance_scale: float = 5,
                    controlnet_conditioning_scale: float = 1.0,
                    ) -> Image.Image:
    width, height  = image['composite'].size
    ratio = np.sqrt(1024. * 1024. / (width * height))
    new_width, new_height = int(width * ratio), int(height * ratio)
    image = image['composite'].resize((new_width, new_height))
    image = ImageOps.invert(image)
    prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
    output = pipe_control(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        num_inference_steps=num_steps,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        guidance_scale=guidance_scale,
        width=new_width,
        height=new_height).images[0]
    processed_image = pipeline.preprocess_image(output)
    return (image, processed_image)

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }

def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    outputs = pipeline.run(
        image[1],
        seed=seed,
        formats=["mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path

def reset_do_preprocess():
    return True

with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Sketch to 3D with TRELLIS
    1. Fast sketch to image with SDXL Flash, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash)
    2. Scalable and versatile image to 3D generation using [TRELLIS](https://trellis3d.github.io/)
    ### ð   ¨ð    ï¸   draw or upload a sketch and click "Generate" to create a 3D asset â  ¨
    """)
    with gr.Row():
        with gr.Column():
            with gr.Column():    
                image_prompt = gr.ImageMask(label="Input sketch", type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
                with gr.Row():
                    sketch_btn = gr.Button("process sketch")
                    generate_btn = gr.Button("Generate 3D")
                with gr.Row():
                    prompt = gr.Textbox(label="Prompt")
                    style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
                with gr.Accordion(label="Generation Settings", open=False):
                    with gr.Tab(label="sketch-to-image generation"):
                        negative_prompt = gr.Textbox(label="Negative prompt")
                        num_steps = gr.Slider(
                        label="Number of steps",
                        minimum=1,
                        maximum=20,
                        step=1,
                        value=8,
                    )
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.1,
                            maximum=10.0,
                            step=0.1,
                            value=5,
                        )
                        controlnet_conditioning_scale = gr.Slider(
                            label="controlnet conditioning scale",
                            minimum=0.5,
                            maximum=5.0,
                            step=0.01,
                            value=0.85,
                        )
                    with gr.Tab(label="3D generation"):
                        seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        gr.Markdown("Stage 1: Sparse Structure Generation")
                        with gr.Row():
                            ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                            ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                        gr.Markdown("Stage 2: Structured Latent Generation")
                        with gr.Row():
                            slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                            slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
            gr.Markdown("""
                        *NOTE: GLB file can be downloaded after extraction.*
                        """)
        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            image_prompt_processed = ImageSlider(label="processed sketch", interactive=False, type="pil", height=512)
            model_output = LitModel3D(label="Extracted GLB", exposure=10.0, height=300)
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)  

    output_buf = gr.State()
    demo.load(start_session)
    demo.unload(end_session)

    image_prompt.clear(
        fn=reset_canvas,
        outputs = [image_prompt]
    )
    sketch_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        preprocess_image,
        inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
        outputs=[image_prompt_processed],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[image_prompt_processed, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[extract_glb_btn],
    )
    video_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[extract_glb_btn],
    )
    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )

if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    #scribble controlnet
    controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-scribble-sdxl-1.0",
    torch_dtype=torch.float16
)
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained(
        "sd-community/sdxl-flash",
        controlnet=controlnet,
        vae=vae,
        torch_dtype=torch.float16,
    )
    pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
    pipe_control.to(device)
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()