Spaces:
Runtime error
Runtime error
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.memory import ConversationTokenBufferMemory | |
| from langchain.llms import HuggingFacePipeline | |
| # from langchain import PromptTemplate | |
| from langchain.prompts import PromptTemplate | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceBgeEmbeddings | |
| from langchain.document_loaders import ( | |
| CSVLoader, | |
| DirectoryLoader, | |
| GitLoader, | |
| NotebookLoader, | |
| OnlinePDFLoader, | |
| PythonLoader, | |
| TextLoader, | |
| UnstructuredFileLoader, | |
| UnstructuredHTMLLoader, | |
| UnstructuredPDFLoader, | |
| UnstructuredWordDocumentLoader, | |
| WebBaseLoader, | |
| PyPDFLoader, | |
| UnstructuredMarkdownLoader, | |
| UnstructuredEPubLoader, | |
| UnstructuredHTMLLoader, | |
| UnstructuredPowerPointLoader, | |
| UnstructuredODTLoader, | |
| NotebookLoader, | |
| UnstructuredFileLoader | |
| ) | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| StoppingCriteria, | |
| StoppingCriteriaList, | |
| pipeline, | |
| GenerationConfig, | |
| TextStreamer, | |
| pipeline | |
| ) | |
| from langchain.llms import HuggingFaceHub | |
| import torch | |
| from transformers import BitsAndBytesConfig | |
| import os | |
| from langchain.llms import CTransformers | |
| import streamlit as st | |
| from langchain.document_loaders.base import BaseLoader | |
| from langchain.schema import Document | |
| import gradio as gr | |
| import tempfile | |
| FILE_LOADER_MAPPING = { | |
| "csv": (CSVLoader, {"encoding": "utf-8"}), | |
| "doc": (UnstructuredWordDocumentLoader, {}), | |
| "docx": (UnstructuredWordDocumentLoader, {}), | |
| "epub": (UnstructuredEPubLoader, {}), | |
| "html": (UnstructuredHTMLLoader, {}), | |
| "md": (UnstructuredMarkdownLoader, {}), | |
| "odt": (UnstructuredODTLoader, {}), | |
| "pdf": (PyPDFLoader, {}), | |
| "ppt": (UnstructuredPowerPointLoader, {}), | |
| "pptx": (UnstructuredPowerPointLoader, {}), | |
| "txt": (TextLoader, {"encoding": "utf8"}), | |
| "ipynb": (NotebookLoader, {}), | |
| "py": (PythonLoader, {}), | |
| # Add more mappings for other file extensions and loaders as needed | |
| } | |
| def load_model(): | |
| # model_path=HuggingFaceHub(repo_id="vilsonrodrigues/falcon-7b-instruct-sharded") | |
| # if not os.path.exists(model_path): | |
| # raise FileNotFoundError(f"No model file found at {model_path}") | |
| # quantization_config = BitsAndBytesConfig( | |
| # load_in_4bit=True, | |
| # bnb_4bit_compute_dtype=torch.float16, | |
| # bnb_4bit_quant_type="nf4", | |
| # bnb_4bit_use_double_quant=True, | |
| # ) | |
| # model_4bit = AutoModelForCausalLM.from_pretrained( | |
| # model_path, | |
| # device_map="auto", | |
| # quantization_config=quantization_config, | |
| # ) | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| # pipeline = pipeline( | |
| # "text-generation", | |
| # model=model_4bit, | |
| # tokenizer=tokenizer, | |
| # use_cache=True, | |
| # device_map="auto", | |
| # max_length=700, | |
| # do_sample=True, | |
| # top_k=5, | |
| # num_return_sequences=1, | |
| # eos_token_id=tokenizer.eos_token_id, | |
| # pad_token_id=tokenizer.eos_token_id, | |
| # ) | |
| # llm = HuggingFacePipeline(pipeline=pipeline) | |
| # llm = CTransformers( | |
| # model=HuggingFaceHub(repo_id="TheBloke/Llama-2-7B-Chat-GGML", model_kwargs={"temperature":0.5, "max_length":512}) | |
| # # model_type=model_type, | |
| # # max_new_tokens=max_new_tokens, # type: ignore | |
| # # temperature=temperature, # type: ignore | |
| # ) | |
| llm = CTransformers( | |
| model = "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", | |
| model_file = "mistral-7b-instruct-v0.1.Q8_0.gguf", | |
| # model="TheBloke/Llama-2-70B-chat-GGUF", | |
| # model = "Deci/DeciLM-6b-instruct", | |
| callbacks=[StreamingStdOutCallbackHandler()] | |
| # model_type=model_type, | |
| # max_new_tokens=max_new_tokens, # type: ignore | |
| # temperature=temperature, # type: ignore | |
| ) | |
| return llm | |
| # def load_document( | |
| # # file_path: str, | |
| # uploaded_files: list, | |
| # mapping: dict = FILE_LOADER_MAPPING, | |
| # default_loader: BaseLoader = UnstructuredFileLoader, | |
| # ) -> Document: | |
| # loaded_documents = [] | |
| # for uploaded_file in uploaded_files: | |
| # # Choose loader from mapping, load default if no match found | |
| # # ext = "." + uploaded_files.rsplit(".", 1)[-1] | |
| # ext = os.path.splitext(uploaded_file.name)[-1][1:].lower() | |
| # if ext in mapping: | |
| # loader_class, loader_args = mapping[ext] | |
| # loader = loader_class(uploaded_file, **loader_args) | |
| # else: | |
| # loader = default_loader(uploaded_file) | |
| # loaded_documents.extend(loader.load()) | |
| # return loaded_documents | |
| def create_vector_database(loaded_documents): | |
| # DB_DIR: str = os.path.join(ABS_PATH, "db") | |
| """ | |
| Creates a vector database using document loaders and embeddings. | |
| This function loads data from PDF, markdown and text files in the 'data/' directory, | |
| splits the loaded documents into chunks, transforms them into embeddings using HuggingFace, | |
| and finally persists the embeddings into a Chroma vector database. | |
| """ | |
| # Split loaded documents into chunks | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40, length_function = len) | |
| chunked_documents = text_splitter.split_documents(loaded_documents) | |
| # Initialize HuggingFace embeddings | |
| # embeddings = HuggingFaceEmbeddings( | |
| # model_name="sentence-transformers/all-MiniLM-L6-v2" | |
| # ) | |
| embeddings = HuggingFaceBgeEmbeddings( | |
| model_name = "BAAI/bge-large-en" | |
| ) | |
| # Create and persist a Chroma vector database from the chunked documents | |
| db = Chroma.from_documents( | |
| documents=chunked_documents, | |
| embedding=embeddings, | |
| persist_directory=persist_directory | |
| # persist_directory=DB_DIR, | |
| ) | |
| db.persist() | |
| # db = Chroma(persist_directory=persist_directory, | |
| # embedding_function=embedding) | |
| return db | |
| def set_custom_prompt_condense(): | |
| _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. | |
| Chat History: | |
| {chat_history} | |
| Follow Up Input: {question} | |
| Standalone question:""" | |
| CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) | |
| return CONDENSE_QUESTION_PROMPT | |
| def set_custom_prompt(): | |
| """ | |
| Prompt template for retrieval for each vectorstore | |
| """ | |
| prompt_template = """<Instructions> | |
| Important: | |
| Answer with the facts listed in the list of sources below. If there isn't enough information below, say you don't know. | |
| If asking a clarifying question to the user would help, ask the question. | |
| ALWAYS return a "SOURCES" part in your answer, except for small-talk conversations. | |
| Question: {question} | |
| {context} | |
| Question: {question} | |
| Helpful Answer: | |
| --------------------------- | |
| --------------------------- | |
| Sources: | |
| """ | |
| prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
| return prompt | |
| def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db): | |
| """ | |
| Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database. | |
| This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations, | |
| and returns this chain. The retriever is set up to return the top 3 results (k=3). | |
| Args: | |
| llm (any): The language model to be used in the RetrievalQA. | |
| prompt (str): The prompt to be used in the chain type. | |
| db (any): The database to be used as the | |
| retriever. | |
| Returns: | |
| ConversationalRetrievalChain: The initialized conversational chain. | |
| """ | |
| memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', output_key='answer') | |
| chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=db.as_retriever(search_kwargs={"k": 3}), | |
| return_source_documents=True, | |
| max_tokens_limit=256, | |
| combine_docs_chain_kwargs={"prompt": prompt}, | |
| condense_question_prompt=CONDENSE_QUESTION_PROMPT, | |
| memory=memory, | |
| ) | |
| return chain | |
| def create_retrieval_qa_bot(loaded_documents): | |
| # if not os.path.exists(persist_dir): | |
| # raise FileNotFoundError(f"No directory found at {persist_dir}") | |
| try: | |
| llm = load_model() # Assuming this function exists and works as expected | |
| except Exception as e: | |
| raise Exception(f"Failed to load model: {str(e)}") | |
| try: | |
| prompt = set_custom_prompt() # Assuming this function exists and works as expected | |
| except Exception as e: | |
| raise Exception(f"Failed to get prompt: {str(e)}") | |
| try: | |
| CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense() # Assuming this function exists and works as expected | |
| except Exception as e: | |
| raise Exception(f"Failed to get condense prompt: {str(e)}") | |
| try: | |
| db = create_vector_database(loaded_documents) # Assuming this function exists and works as expected | |
| except Exception as e: | |
| raise Exception(f"Failed to get database: {str(e)}") | |
| try: | |
| qa = create_chain( | |
| llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db | |
| ) # Assuming this function exists and works as expected | |
| except Exception as e: | |
| raise Exception(f"Failed to create retrieval QA chain: {str(e)}") | |
| return qa | |
| def retrieve_bot_answer(query, loaded_documents): | |
| """ | |
| Retrieves the answer to a given query using a QA bot. | |
| This function creates an instance of a QA bot, passes the query to it, | |
| and returns the bot's response. | |
| Args: | |
| query (str): The question to be answered by the QA bot. | |
| Returns: | |
| dict: The QA bot's response, typically a dictionary with response details. | |
| """ | |
| qa_bot_instance = create_retrieval_qa_bot(loaded_documents) | |
| bot_response = qa_bot_instance({"question": query}) | |
| # Check if the 'answer' key exists in the bot_response dictionary | |
| if 'answer' in bot_response: | |
| # answer = bot_response['answer'] | |
| return bot_response | |
| else: | |
| raise KeyError("Expected 'answer' key in bot_response, but it was not found.") | |
| # from your_module import load_model, set_custom_prompt, set_custom_prompt_condense, create_vector_database, retrieve_bot_answer | |
| def main(): | |
| st.title("Docuverse") | |
| # Upload files | |
| uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True) | |
| loaded_documents = [] | |
| if uploaded_files: | |
| # Create a temporary directory | |
| with tempfile.TemporaryDirectory() as td: | |
| # Move the uploaded files to the temporary directory and process them | |
| for uploaded_file in uploaded_files: | |
| st.write(f"Uploaded: {uploaded_file.name}") | |
| ext = os.path.splitext(uploaded_file.name)[-1][1:].lower() | |
| st.write(f"Uploaded: {ext}") | |
| # Check if the extension is in FILE_LOADER_MAPPING | |
| if ext in FILE_LOADER_MAPPING: | |
| loader_class, loader_args = FILE_LOADER_MAPPING[ext] | |
| # st.write(f"loader_class: {loader_class}") | |
| # Save the uploaded file to the temporary directory | |
| file_path = os.path.join(td, uploaded_file.name) | |
| with open(file_path, 'wb') as temp_file: | |
| temp_file.write(uploaded_file.read()) | |
| # Use Langchain loader to process the file | |
| loader = loader_class(file_path, **loader_args) | |
| loaded_documents.extend(loader.load()) | |
| else: | |
| st.warning(f"Unsupported file extension: {ext}") | |
| # st.write(f"loaded_documents: {loaded_documents}") | |
| st.write("Chat with the Document:") | |
| query = st.text_input("Ask a question:") | |
| if st.button("Get Answer"): | |
| if query: | |
| # Load model, set prompts, create vector database, and retrieve answer | |
| try: | |
| llm = load_model() | |
| prompt = set_custom_prompt() | |
| CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense() | |
| db = create_vector_database(loaded_documents) | |
| # st.write(f"db: {db}") | |
| response = retrieve_bot_answer(query,loaded_documents) | |
| # st.write(f"response: {response}") | |
| # Display bot response | |
| st.write("Bot Response:") | |
| st.write(response['answer']) | |
| except Exception as e: | |
| st.error(f"An error occurred: {str(e)}") | |
| else: | |
| st.warning("Please enter a question.") | |
| if __name__ == "__main__": | |
| main() |