import gradio as gr from transformers.utils import logging logging.set_verbosity_error() import warnings warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") from transformers import BlipForQuestionAnswering from transformers import AutoProcessor def qa(image, question): model = BlipForQuestionAnswering.from_pretrained( "./models/Salesforce/blip-vqa-base") processor = AutoProcessor.from_pretrained( "./models/Salesforce/blip-vqa-base") inputs = processor(image, question, return_tensors="pt") out = model.generate(image, question) result = processor.decode(out[0], skip_special_tokens=True) return result # def greet(name): # return "Hello " + name + "!!" iface = gr.Interface(fn=qa, inputs=["image","text"], outputs="textbox") iface.launch()