File size: 7,269 Bytes
79859e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from __future__ import annotations
import json
import uuid
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse
from ..requests import StreamSession, raise_for_status
from ..errors import ResponseStatusError
class AmigoChat(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://amigochat.io/chat/"
chat_api_endpoint = "https://api.amigochat.io/v1/chat/completions"
image_api_endpoint = "https://api.amigochat.io/v1/images/generations"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'gpt-4o-mini'
chat_models = [
'gpt-4o',
default_model,
'o1-preview',
'o1-mini',
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
'claude-3-sonnet-20240229',
'gemini-1.5-pro',
]
image_models = [
'flux-pro/v1.1',
'flux-realism',
'flux-pro',
'dalle-e-3',
]
models = [*chat_models, *image_models]
model_aliases = {
"o1": "o1-preview",
"llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
"llama-3.2-90b": "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
"claude-3.5-sonnet": "claude-3-sonnet-20240229",
"gemini-pro": "gemini-1.5-pro",
"flux-pro": "flux-pro/v1.1",
"dalle-3": "dalle-e-3",
}
persona_ids = {
'gpt-4o': "gpt",
'gpt-4o-mini': "amigo",
'o1-preview': "openai-o-one",
'o1-mini': "openai-o-one-mini",
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo': "llama-three-point-one",
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo': "llama-3-2",
'claude-3-sonnet-20240229': "claude",
'gemini-1.5-pro': "gemini-1-5-pro",
'flux-pro/v1.1': "flux-1-1-pro",
'flux-realism': "flux-realism",
'flux-pro': "flux-pro",
'dalle-e-3': "dalle-three",
}
@classmethod
def get_personaId(cls, model: str) -> str:
return cls.persona_ids[model]
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
stream: bool = False,
timeout: int = 300,
frequency_penalty: float = 0,
max_tokens: int = 4000,
presence_penalty: float = 0,
temperature: float = 0.5,
top_p: float = 0.95,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
device_uuid = str(uuid.uuid4())
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"authorization": "Bearer",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"priority": "u=1, i",
"referer": f"{cls.url}/",
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
"x-device-language": "en-US",
"x-device-platform": "web",
"x-device-uuid": device_uuid,
"x-device-version": "1.0.41"
}
async with StreamSession(headers=headers, proxy=proxy) as session:
if model not in cls.image_models:
data = {
"messages": messages,
"model": model,
"personaId": cls.get_personaId(model),
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens,
"presence_penalty": presence_penalty,
"stream": stream,
"temperature": temperature,
"top_p": top_p
}
async with session.post(cls.chat_api_endpoint, json=data, timeout=timeout) as response:
await raise_for_status(response)
async for line in response.iter_lines():
line = line.decode('utf-8').strip()
if line.startswith('data: '):
if line == 'data: [DONE]':
break
try:
chunk = json.loads(line[6:]) # Remove 'data: ' prefix
if 'choices' in chunk and len(chunk['choices']) > 0:
choice = chunk['choices'][0]
if 'delta' in choice:
content = choice['delta'].get('content')
elif 'text' in choice:
content = choice['text']
else:
content = None
if content:
yield content
except json.JSONDecodeError:
pass
else:
# Image generation
prompt = messages[-1]['content']
data = {
"prompt": prompt,
"model": model,
"personaId": cls.get_personaId(model)
}
async with session.post(cls.image_api_endpoint, json=data) as response:
await raise_for_status(response)
response_data = await response.json()
if "data" in response_data:
image_urls = []
for item in response_data["data"]:
if "url" in item:
image_url = item["url"]
image_urls.append(image_url)
if image_urls:
yield ImageResponse(image_urls, prompt)
else:
yield None
break
except (ResponseStatusError, Exception) as e:
retry_count += 1
if retry_count >= max_retries:
raise e
device_uuid = str(uuid.uuid4())
|