Spaces:
Running
Running
| import { env, AutoModel, AutoProcessor, RawImage } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
| // Since we will download the model from the Hugging Face Hub, we can skip the local model check | |
| env.allowLocalModels = false; | |
| // Reference the elements that we will need | |
| const status = document.getElementById('status'); | |
| const fileUpload = document.getElementById('upload'); | |
| const imageContainer = document.getElementById('container'); | |
| const example = document.getElementById('example'); | |
| const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; | |
| // Create a new object detection pipeline | |
| status.textContent = 'Loading model...'; | |
| const model_id = 'onnx-community/yolov10n'; | |
| const model = await AutoModel.from_pretrained(model_id, { | |
| quantized: false, // (Optional) Use unquantized version. | |
| }); | |
| const processor = await AutoProcessor.from_pretrained(model_id); | |
| status.textContent = 'Ready'; | |
| example.addEventListener('click', (e) => { | |
| e.preventDefault(); | |
| detect(EXAMPLE_URL); | |
| }); | |
| fileUpload.addEventListener('change', function (e) { | |
| const file = e.target.files[0]; | |
| if (!file) { | |
| return; | |
| } | |
| const reader = new FileReader(); | |
| // Set up a callback when the file is loaded | |
| reader.onload = e2 => detect(e2.target.result); | |
| reader.readAsDataURL(file); | |
| }); | |
| // Detect objects in the image | |
| async function detect(img) { | |
| imageContainer.innerHTML = ''; | |
| imageContainer.style.backgroundImage = `url(${img})`; | |
| status.textContent = 'Analysing...'; | |
| const image = await RawImage.read(img); | |
| const { pixel_values } = await processor(image); | |
| const { output0 } = await model({ images: pixel_values }); | |
| const predictions = output0.tolist()[0]; | |
| const threshold = 0.5; | |
| for (const [xmin, ymin, xmax, ymax, score, id] of predictions) { | |
| if (score < threshold) continue; | |
| renderBox(xmin, ymin, xmax, ymax, score, model.config.id2label[id]); | |
| } | |
| status.textContent = ''; | |
| output.forEach(renderBox); | |
| } | |
| // Render a bounding box and label on the image | |
| function renderBox(xmin, ymin, xmax, ymax, score, label) { | |
| // Generate a random color for the box | |
| const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0); | |
| // Draw the box | |
| const boxElement = document.createElement('div'); | |
| boxElement.className = 'bounding-box'; | |
| Object.assign(boxElement.style, { | |
| borderColor: color, | |
| left: 100 * xmin + '%', | |
| top: 100 * ymin + '%', | |
| width: 100 * (xmax - xmin) + '%', | |
| height: 100 * (ymax - ymin) + '%', | |
| }) | |
| // Draw label | |
| const labelElement = document.createElement('span'); | |
| labelElement.textContent = `${label} (${(score * 100).toFixed(2)}%)`; | |
| labelElement.className = 'bounding-box-label'; | |
| labelElement.style.backgroundColor = color; | |
| boxElement.appendChild(labelElement); | |
| imageContainer.appendChild(boxElement); | |
| } | |