add code
Browse files- app.py +47 -4
- requirements.txt +0 -0
app.py
CHANGED
@@ -1,8 +1,51 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
text_generation_model = "cahya/indochat-tiny"
|
5 |
+
text_generation = pipeline("text-generation", text_generation_model)
|
6 |
|
|
|
|
|
7 |
|
8 |
+
def get_answer(user_input, decoding_methods, top_k, top_p, temperature, repetition_penalty, penalty_alpha):
|
9 |
+
if decoding_methods == "Beam Search":
|
10 |
+
do_sample = False
|
11 |
+
elif decoding_methods == "Sampling":
|
12 |
+
do_sample = True
|
13 |
+
else:
|
14 |
+
do_sample = False
|
15 |
+
print(user_input, decoding_methods, do_sample, top_k, top_p, temperature, repetition_penalty, penalty_alpha)
|
16 |
+
prompt = f"User: {user_input}\nAssistant: "
|
17 |
+
generated_text = text_generation(f"{prompt}", min_length=50, max_length=200, num_return_sequences=1,
|
18 |
+
do_sample=do_sample, top_k=top_k, top_p=top_p, temperature=temperature,
|
19 |
+
repetition_penalty=repetition_penalty)#, penalty_alpha=penalty_alpha)
|
20 |
+
answer = generated_text[0]["generated_text"]
|
21 |
+
answer_without_prompt = answer[len(prompt)+1:]
|
22 |
+
return answer_without_prompt
|
23 |
+
|
24 |
+
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
with gr.Row():
|
27 |
+
gr.Markdown(
|
28 |
+
"## IndoChat")
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
user_input = gr.inputs.Textbox(placeholder="",
|
32 |
+
label="Ask me something in Indonesian or English",
|
33 |
+
default="Bagaimana cara mendidik anak supaya tidak berbohong?")
|
34 |
+
decoding_methods = gr.Dropdown(["Beam Search", "Sampling", "Contrastive Search"])
|
35 |
+
top_k = gr.inputs.Slider(label="Top K: The number of highest probability vocabulary tokens to keep",
|
36 |
+
default=40, maximum=50, minimum=1, step=1)
|
37 |
+
top_p = gr.inputs.Slider(label="Top P", default=0.9, step=0.05, minimum=0.1, maximum=1.0)
|
38 |
+
temperature = gr.inputs.Slider(label="Temperature", default=0.5, step=0.05, minimum=0.1, maximum=1.0)
|
39 |
+
repetition_penalty = gr.inputs.Slider(label="Repetition Penalty", default=1.1, step=0.05, minimum=1.0, maximum=2.0)
|
40 |
+
penalty_alpha = gr.inputs.Slider(label="The penalty alpha for contrastive search", default=1.1, step=0.05, minimum=1.0, maximum=2.0)
|
41 |
+
with gr.Row():
|
42 |
+
button_generate_story = gr.Button("Submit")
|
43 |
+
with gr.Column():
|
44 |
+
generated_answer = gr.Textbox()
|
45 |
+
with gr.Row():
|
46 |
+
gr.Markdown("")
|
47 |
+
|
48 |
+
button_generate_story.click(get_answer, inputs=[user_input, decoding_methods, top_k, top_p, temperature,
|
49 |
+
repetition_penalty, penalty_alpha], outputs=[generated_answer])
|
50 |
+
|
51 |
+
demo.launch(enable_queue=False)
|
requirements.txt
ADDED
File without changes
|