Spaces:
Sleeping
Sleeping
Commit
·
8c8fd10
1
Parent(s):
b3993d8
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import math
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
+
from sklearn.metrics import mean_squared_error
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
from tensorflow.keras.models import Sequential
|
| 9 |
+
from tensorflow.keras.layers import Dense
|
| 10 |
+
from tensorflow.keras.layers import LSTM
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
import yfinance as yf
|
| 15 |
+
|
| 16 |
+
def get_ans(inp):
|
| 17 |
+
tickers = yf.Tickers(inp)
|
| 18 |
+
x = tickers.tickers[inp].history(period="15y")
|
| 19 |
+
df = x
|
| 20 |
+
df.reset_index(inplace=True)
|
| 21 |
+
df1 = df.reset_index()['Close']
|
| 22 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 23 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
| 24 |
+
df1 = scaler.fit_transform(np.array(df1).reshape(-1, 1))
|
| 25 |
+
training_size = int(len(df1) * 0.65)
|
| 26 |
+
test_size = len(df1) - training_size
|
| 27 |
+
train_data, test_data = df1[0:training_size, :], df1[training_size:len(df1), :1]
|
| 28 |
+
def create_dataset(dataset, time_step=1):
|
| 29 |
+
dataX, dataY = [], []
|
| 30 |
+
for i in range(len(dataset) - time_step - 1):
|
| 31 |
+
a = dataset[i:(i + time_step), 0]
|
| 32 |
+
dataX.append(a)
|
| 33 |
+
dataY.append(dataset[i + time_step, 0])
|
| 34 |
+
return np.array(dataX), np.array(dataY)
|
| 35 |
+
time_step = 100
|
| 36 |
+
X_train, y_train = create_dataset(train_data, time_step)
|
| 37 |
+
X_test, ytest = create_dataset(test_data, time_step)
|
| 38 |
+
|
| 39 |
+
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
| 40 |
+
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
|
| 41 |
+
model = Sequential()
|
| 42 |
+
model.add(LSTM(50, return_sequences=True, input_shape=(100, 1)))
|
| 43 |
+
model.add(LSTM(50, return_sequences=True))
|
| 44 |
+
model.add(LSTM(50))
|
| 45 |
+
model.add(Dense(1))
|
| 46 |
+
model.compile(loss='mean_squared_error', optimizer='adam')
|
| 47 |
+
model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=2,batch_size=64,verbose=1)
|
| 48 |
+
train_predict=model.predict(X_train)
|
| 49 |
+
test_predict=model.predict(X_test)
|
| 50 |
+
train_predict=scaler.inverse_transform(train_predict)
|
| 51 |
+
test_predict=scaler.inverse_transform(test_predict)
|
| 52 |
+
look_back=100
|
| 53 |
+
trainPredictPlot = np.empty_like(df1)
|
| 54 |
+
trainPredictPlot[:, :] = np.nan
|
| 55 |
+
trainPredictPlot[look_back:len(train_predict)+look_back, :] = train_predict
|
| 56 |
+
# shift test predictions for plotting
|
| 57 |
+
testPredictPlot = np.empty_like(df1)
|
| 58 |
+
testPredictPlot[:, :] = np.nan
|
| 59 |
+
testPredictPlot[len(train_predict)+(look_back*2)+1:len(df1)-1, :] = test_predict
|
| 60 |
+
# plot baseline and predictions
|
| 61 |
+
plt.plot(scaler.inverse_transform(df1))
|
| 62 |
+
plt.plot(trainPredictPlot)
|
| 63 |
+
plt.plot(testPredictPlot)
|
| 64 |
+
|
| 65 |
+
x_input=test_data[341:].reshape(1,-1)
|
| 66 |
+
resize_var = x_input.size
|
| 67 |
+
temp_input=list(x_input)
|
| 68 |
+
temp_input=temp_input[0].tolist()
|
| 69 |
+
lst_output=[]
|
| 70 |
+
n_steps=100
|
| 71 |
+
i=0
|
| 72 |
+
while(i<30):
|
| 73 |
+
|
| 74 |
+
if(len(temp_input)>100):
|
| 75 |
+
#print(temp_input)
|
| 76 |
+
x_input=np.array(temp_input[1:])
|
| 77 |
+
# print("{} day input {}".format(i,x_input))
|
| 78 |
+
x_input=x_input.reshape(1,-1)
|
| 79 |
+
x_input = x_input.reshape((1, x_input.size, 1))
|
| 80 |
+
#print(x_input)
|
| 81 |
+
yhat = model.predict(x_input, verbose=0)
|
| 82 |
+
# print("{} day output {}".format(i,yhat))
|
| 83 |
+
temp_input.extend(yhat[0].tolist())
|
| 84 |
+
temp_input=temp_input[1:]
|
| 85 |
+
#print(temp_input)
|
| 86 |
+
lst_output.extend(yhat.tolist())
|
| 87 |
+
i=i+1
|
| 88 |
+
else:
|
| 89 |
+
x_input = x_input.reshape((1, n_steps,1))
|
| 90 |
+
yhat = model.predict(x_input, verbose=0)
|
| 91 |
+
# print(yhat[0])
|
| 92 |
+
temp_input.extend(yhat[0].tolist())
|
| 93 |
+
# print(len(temp_input))
|
| 94 |
+
lst_output.extend(yhat.tolist())
|
| 95 |
+
i=i+1
|
| 96 |
+
|
| 97 |
+
day_new=np.arange(1,101)
|
| 98 |
+
day_pred=np.arange(101,131)
|
| 99 |
+
|
| 100 |
+
df3=df1. tolist()
|
| 101 |
+
df3.extend (lst_output)
|
| 102 |
+
len_lis = len(lst_output)
|
| 103 |
+
df3=pd.DataFrame(df3, columns=['Values'])
|
| 104 |
+
df3['index']=range(1, len(df3) + 1)
|
| 105 |
+
lst_output = pd.DataFrame(lst_output, columns=["Values"])
|
| 106 |
+
lst_output['index']=range(1, len(lst_output) + 1)
|
| 107 |
+
return plt, gr.update(visible=True,value=df, x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-300:], x="Date",y="Open", height=500, width=800),gr.update(visible=True,value=df[-30:], x="Date",y="Open", height=500, width=800), max(np.asarray(df['Open'])), min(np.asarray(df['Open'])), max(np.asarray(df['Open'])[-300:]), min(np.asarray(df['Open'][-300:])), max(np.asarray(df['Open'])[-30:]), min(np.asarray(df['Open'][-30:])), lst_output["Values"][0], gr.update(visible=True,value=lst_output, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3, x="index",y="Values", height=500, width=800), gr.update(visible=True,value=df3[-300:], x="index",y="Values", height=500, width=800)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
with gr.Blocks() as demo:
|
| 111 |
+
with gr.Row().style(equal_height=True):
|
| 112 |
+
with gr.Column():
|
| 113 |
+
gr.Markdown("<center><h1>BI Project<h1></center>")
|
| 114 |
+
gr.Markdown("<center><h3>Give the Ticker of the company you want to analyse. We will provide complete insights on the given company.</h3></center>")
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column():
|
| 117 |
+
Name_of_the_company = gr.Textbox(placeholder="eg, GOOG / MSFT / AAPL", label="TICKER of the company")
|
| 118 |
+
btn = gr.Button("ANALYSE")
|
| 119 |
+
gr.Markdown("<center><h2>Analysis<h2></center>")
|
| 120 |
+
gr.Markdown("<h3>Regression Trends of Price<h3>")
|
| 121 |
+
mp = gr.Plot()
|
| 122 |
+
gr.Markdown("<h3>Price over time<h3>")
|
| 123 |
+
with gr.Tab("All Time"):
|
| 124 |
+
mp1 = gr.LinePlot(visible=False, label="All time", height=1000, width=1000)
|
| 125 |
+
with gr.Row():
|
| 126 |
+
Max_all = gr.Textbox(placeholder="The Maximum price the stock has ever reached", label='Maximum of all time')
|
| 127 |
+
Min_all = gr.Textbox(placeholder="The Minimum price the stock has ever reached", label="Minimum of all time")
|
| 128 |
+
with gr.Tab("Past year"):
|
| 129 |
+
mp2 = gr.LinePlot(visible=False, label="Last year")
|
| 130 |
+
with gr.Row():
|
| 131 |
+
Max_year = gr.Textbox(placeholder="The Maximum price for the last year", label='Maximum')
|
| 132 |
+
Min_year = gr.Textbox(placeholder="The Minimum price for the last year", label="Minimum")
|
| 133 |
+
with gr.Tab("Past few Days"):
|
| 134 |
+
mp3 = gr.LinePlot(visible=False, label="Past few Days")
|
| 135 |
+
with gr.Row():
|
| 136 |
+
Max_rec = gr.Textbox(placeholder="The Maximum price for the last few days", label='Recent Maximum')
|
| 137 |
+
Min_rec = gr.Textbox(placeholder="The Minimum price for the last few days", label="Recent Minimum")
|
| 138 |
+
gr.Markdown("<center><h2>Predictive Analysis</h2></center>")
|
| 139 |
+
Next_day = gr.Textbox(placeholder="Predicted price for tomorrow", label="Predicted price for Tomorrow")
|
| 140 |
+
Next_plot = gr.LinePlot(visible=False)
|
| 141 |
+
Next_plot_all = gr.LinePlot(visible=False)
|
| 142 |
+
Next_plot_year = gr.LinePlot(visible=False)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
btn.click(get_ans, inputs=Name_of_the_company, outputs= [mp,mp1,mp2,mp3, Max_all, Min_all,Max_year, Min_year, Max_rec, Min_rec, Next_day, Next_plot, Next_plot_all, Next_plot_year])
|
| 146 |
+
|
| 147 |
+
demo.launch(inline = False)
|