File size: 13,926 Bytes
a3ea5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import torch
import torch.nn as nn
import torch.nn.functional as F
from mol_tree import Vocab, MolTree, MolTreeNode
from nnutils import create_var, GRU
from chemutils import enum_assemble, set_atommap
import copy

MAX_NB = 15
MAX_DECODE_LEN = 100

class JTNNDecoder(nn.Module):

    def __init__(self, vocab, hidden_size, latent_size, embedding):
        super(JTNNDecoder, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab.size()
        self.vocab = vocab
        self.embedding = embedding

        #GRU Weights
        self.W_z = nn.Linear(2 * hidden_size, hidden_size)
        self.U_r = nn.Linear(hidden_size, hidden_size, bias=False)
        self.W_r = nn.Linear(hidden_size, hidden_size)
        self.W_h = nn.Linear(2 * hidden_size, hidden_size)

        #Word Prediction Weights 
        self.W = nn.Linear(hidden_size + latent_size, hidden_size)

        #Stop Prediction Weights
        self.U = nn.Linear(hidden_size + latent_size, hidden_size)
        self.U_i = nn.Linear(2 * hidden_size, hidden_size)

        #Output Weights
        self.W_o = nn.Linear(hidden_size, self.vocab_size)
        self.U_o = nn.Linear(hidden_size, 1)

        #Loss Functions
        # self.pred_loss = nn.CrossEntropyLoss(size_average=False)
        # self.stop_loss = nn.BCEWithLogitsLoss(size_average=False)
        self.pred_loss = nn.CrossEntropyLoss(reduction='sum')
        self.stop_loss = nn.BCEWithLogitsLoss(reduction='sum')

    def aggregate(self, hiddens, contexts, x_tree_vecs, mode):
        if mode == 'word':
            V, V_o = self.W, self.W_o
        elif mode == 'stop':
            V, V_o = self.U, self.U_o
        else:
            raise ValueError('aggregate mode is wrong')

        tree_contexts = x_tree_vecs.index_select(0, contexts)
        input_vec = torch.cat([hiddens, tree_contexts], dim=-1)
        output_vec = F.relu( V(input_vec) )
        return V_o(output_vec)

    def forward(self, mol_batch, x_tree_vecs):
        pred_hiddens,pred_contexts,pred_targets = [],[],[]
        stop_hiddens,stop_contexts,stop_targets = [],[],[]
        traces = []
        for mol_tree in mol_batch:
            s = []
            dfs(s, mol_tree.nodes[0], -1)
            traces.append(s)
            for node in mol_tree.nodes:
                node.neighbors = []

        #Predict Root
        batch_size = len(mol_batch)
        pred_hiddens.append(create_var(torch.zeros(len(mol_batch),self.hidden_size)))
        pred_targets.extend([mol_tree.nodes[0].wid for mol_tree in mol_batch])
        pred_contexts.append( create_var( torch.LongTensor(range(batch_size)) ) )

        max_iter = max([len(tr) for tr in traces])
        padding = create_var(torch.zeros(self.hidden_size), False)
        h = {}

        for t in range(max_iter):
            prop_list = []
            batch_list = []
            for i,plist in enumerate(traces):
                if t < len(plist):
                    prop_list.append(plist[t])
                    batch_list.append(i)

            cur_x = []
            cur_h_nei,cur_o_nei = [],[]

            for node_x, real_y, _ in prop_list:
                #Neighbors for message passing (target not included)
                cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != real_y.idx]
                pad_len = MAX_NB - len(cur_nei)
                cur_h_nei.extend(cur_nei)
                cur_h_nei.extend([padding] * pad_len)

                #Neighbors for stop prediction (all neighbors)
                cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
                pad_len = MAX_NB - len(cur_nei)
                cur_o_nei.extend(cur_nei)
                cur_o_nei.extend([padding] * pad_len)

                #Current clique embedding
                cur_x.append(node_x.wid)

            #Clique embedding
            cur_x = create_var(torch.LongTensor(cur_x))
            cur_x = self.embedding(cur_x) 
            
            #Message passing
            cur_h_nei = torch.stack(cur_h_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
            new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)

            #Node Aggregate
            cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
            cur_o = cur_o_nei.sum(dim=1)

            #Gather targets
            pred_target,pred_list = [],[]
            stop_target = []
            for i,m in enumerate(prop_list):
                node_x,node_y,direction = m
                x,y = node_x.idx,node_y.idx
                h[(x,y)] = new_h[i]
                node_y.neighbors.append(node_x)
                if direction == 1:
                    pred_target.append(node_y.wid)
                    pred_list.append(i) 
                stop_target.append(direction)

            #Hidden states for stop prediction
            cur_batch = create_var(torch.LongTensor(batch_list))
            stop_hidden = torch.cat([cur_x,cur_o], dim=1)
            stop_hiddens.append( stop_hidden )
            stop_contexts.append( cur_batch )
            stop_targets.extend( stop_target )
            
            #Hidden states for clique prediction
            if len(pred_list) > 0:
                batch_list = [batch_list[i] for i in pred_list]
                cur_batch = create_var(torch.LongTensor(batch_list))
                pred_contexts.append( cur_batch )

                cur_pred = create_var(torch.LongTensor(pred_list))
                pred_hiddens.append( new_h.index_select(0, cur_pred) )
                pred_targets.extend( pred_target )

        #Last stop at root
        cur_x,cur_o_nei = [],[]
        for mol_tree in mol_batch:
            node_x = mol_tree.nodes[0]
            cur_x.append(node_x.wid)
            cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
            pad_len = MAX_NB - len(cur_nei)
            cur_o_nei.extend(cur_nei)
            cur_o_nei.extend([padding] * pad_len)

        cur_x = create_var(torch.LongTensor(cur_x))
        cur_x = self.embedding(cur_x) 
        cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
        cur_o = cur_o_nei.sum(dim=1)

        stop_hidden = torch.cat([cur_x,cur_o], dim=1)
        stop_hiddens.append( stop_hidden )
        stop_contexts.append( create_var( torch.LongTensor(range(batch_size)) ) )
        stop_targets.extend( [0] * len(mol_batch) )

        #Predict next clique
        pred_contexts = torch.cat(pred_contexts, dim=0)
        pred_hiddens = torch.cat(pred_hiddens, dim=0)
        pred_scores = self.aggregate(pred_hiddens, pred_contexts, x_tree_vecs, 'word')
        pred_targets = create_var(torch.LongTensor(pred_targets))

        pred_loss = self.pred_loss(pred_scores, pred_targets) / len(mol_batch)
        _,preds = torch.max(pred_scores, dim=1)
        pred_acc = torch.eq(preds, pred_targets).float()
        pred_acc = torch.sum(pred_acc) / pred_targets.nelement()

        #Predict stop
        stop_contexts = torch.cat(stop_contexts, dim=0)
        stop_hiddens = torch.cat(stop_hiddens, dim=0)
        stop_hiddens = F.relu( self.U_i(stop_hiddens) )
        stop_scores = self.aggregate(stop_hiddens, stop_contexts, x_tree_vecs, 'stop')
        stop_scores = stop_scores.squeeze(-1)
        stop_targets = create_var(torch.Tensor(stop_targets))
        
        stop_loss = self.stop_loss(stop_scores, stop_targets) / len(mol_batch)
        stops = torch.ge(stop_scores, 0).float()
        stop_acc = torch.eq(stops, stop_targets).float()
        stop_acc = torch.sum(stop_acc) / stop_targets.nelement()

        return pred_loss, stop_loss, pred_acc.item(), stop_acc.item()
    
    def decode(self, x_tree_vecs, prob_decode):
        assert x_tree_vecs.size(0) == 1

        stack = []
        init_hiddens = create_var( torch.zeros(1, self.hidden_size) )
        zero_pad = create_var(torch.zeros(1,1,self.hidden_size))
        contexts = create_var( torch.LongTensor(1).zero_() )

        #Root Prediction
        root_score = self.aggregate(init_hiddens, contexts, x_tree_vecs, 'word')
        _,root_wid = torch.max(root_score, dim=1)
        root_wid = root_wid.item()

        root = MolTreeNode(self.vocab.get_smiles(root_wid))
        root.wid = root_wid
        root.idx = 0
        stack.append( (root, self.vocab.get_slots(root.wid)) )

        all_nodes = [root]
        h = {}
        for step in range(MAX_DECODE_LEN):
            node_x,fa_slot = stack[-1]
            cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors ]
            if len(cur_h_nei) > 0:
                cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
            else:
                cur_h_nei = zero_pad

            cur_x = create_var(torch.LongTensor([node_x.wid]))
            cur_x = self.embedding(cur_x)

            #Predict stop
            cur_h = cur_h_nei.sum(dim=1)
            stop_hiddens = torch.cat([cur_x,cur_h], dim=1)
            stop_hiddens = F.relu( self.U_i(stop_hiddens) )
            stop_score = self.aggregate(stop_hiddens, contexts, x_tree_vecs, 'stop')
            
            if prob_decode:
                backtrack = (torch.bernoulli( torch.sigmoid(stop_score) ).item() == 0)
            else:
                backtrack = (stop_score.item() < 0) 

            if not backtrack: #Forward: Predict next clique
                new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
                pred_score = self.aggregate(new_h, contexts, x_tree_vecs, 'word')

                if prob_decode:
                    sort_wid = torch.multinomial(F.softmax(pred_score, dim=1).squeeze(), 5)
                else:
                    _,sort_wid = torch.sort(pred_score, dim=1, descending=True)
                    sort_wid = sort_wid.data.squeeze()

                next_wid = None
                for wid in sort_wid[:5]:
                    slots = self.vocab.get_slots(wid)
                    node_y = MolTreeNode(self.vocab.get_smiles(wid))
                    if have_slots(fa_slot, slots) and can_assemble(node_x, node_y):
                        next_wid = wid
                        next_slots = slots
                        break

                if next_wid is None:
                    backtrack = True #No more children can be added
                else:
                    node_y = MolTreeNode(self.vocab.get_smiles(next_wid))
                    node_y.wid = next_wid
                    node_y.idx = len(all_nodes)
                    node_y.neighbors.append(node_x)
                    h[(node_x.idx,node_y.idx)] = new_h[0]
                    stack.append( (node_y,next_slots) )
                    all_nodes.append(node_y)

            if backtrack: #Backtrack, use if instead of else
                if len(stack) == 1: 
                    break #At root, terminate

                node_fa,_ = stack[-2]
                cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != node_fa.idx ]
                if len(cur_h_nei) > 0:
                    cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
                else:
                    cur_h_nei = zero_pad

                new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
                h[(node_x.idx,node_fa.idx)] = new_h[0]
                node_fa.neighbors.append(node_x)
                stack.pop()

        return root, all_nodes

"""
Helper Functions:
"""
def dfs(stack, x, fa_idx):
    for y in x.neighbors:
        if y.idx == fa_idx: continue
        stack.append( (x,y,1) )
        dfs(stack, y, x.idx)
        stack.append( (y,x,0) )

def have_slots(fa_slots, ch_slots):
    if len(fa_slots) > 2 and len(ch_slots) > 2:
        return True
    matches = []
    for i,s1 in enumerate(fa_slots):
        a1,c1,h1 = s1
        for j,s2 in enumerate(ch_slots):
            a2,c2,h2 = s2
            if a1 == a2 and c1 == c2 and (a1 != "C" or h1 + h2 >= 4):
                matches.append( (i,j) )

    if len(matches) == 0: return False

    fa_match,ch_match = zip(*matches)
    if len(set(fa_match)) == 1 and 1 < len(fa_slots) <= 2: #never remove atom from ring
        fa_slots.pop(fa_match[0])
    if len(set(ch_match)) == 1 and 1 < len(ch_slots) <= 2: #never remove atom from ring
        ch_slots.pop(ch_match[0])

    return True

def can_assemble(node_x, node_y):
    node_x.nid = 1
    node_x.is_leaf = False
    set_atommap(node_x.mol, node_x.nid)

    neis = node_x.neighbors + [node_y]
    for i,nei in enumerate(neis):
        nei.nid = i + 2
        nei.is_leaf = (len(nei.neighbors) <= 1)
        if nei.is_leaf:
            set_atommap(nei.mol, 0)
        else:
            set_atommap(nei.mol, nei.nid)

    neighbors = [nei for nei in neis if nei.mol.GetNumAtoms() > 1]
    neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
    singletons = [nei for nei in neis if nei.mol.GetNumAtoms() == 1]
    neighbors = singletons + neighbors
    cands,aroma_scores = enum_assemble(node_x, neighbors)
    return len(cands) > 0# and sum(aroma_scores) >= 0

if __name__ == "__main__":
    smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1","O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2", "ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3", "C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1", 'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1', "O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"]
    for s in smiles:
        print(s)
        tree = MolTree(s)
        for i,node in enumerate(tree.nodes):
            node.idx = i

        stack = []
        dfs(stack, tree.nodes[0], -1)
        for x,y,d in stack:
            print(x.smiles, y.smiles, d)
        print('------------------------------')