Spaces:
Sleeping
Sleeping
File size: 13,926 Bytes
a3ea5d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from mol_tree import Vocab, MolTree, MolTreeNode
from nnutils import create_var, GRU
from chemutils import enum_assemble, set_atommap
import copy
MAX_NB = 15
MAX_DECODE_LEN = 100
class JTNNDecoder(nn.Module):
def __init__(self, vocab, hidden_size, latent_size, embedding):
super(JTNNDecoder, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab.size()
self.vocab = vocab
self.embedding = embedding
#GRU Weights
self.W_z = nn.Linear(2 * hidden_size, hidden_size)
self.U_r = nn.Linear(hidden_size, hidden_size, bias=False)
self.W_r = nn.Linear(hidden_size, hidden_size)
self.W_h = nn.Linear(2 * hidden_size, hidden_size)
#Word Prediction Weights
self.W = nn.Linear(hidden_size + latent_size, hidden_size)
#Stop Prediction Weights
self.U = nn.Linear(hidden_size + latent_size, hidden_size)
self.U_i = nn.Linear(2 * hidden_size, hidden_size)
#Output Weights
self.W_o = nn.Linear(hidden_size, self.vocab_size)
self.U_o = nn.Linear(hidden_size, 1)
#Loss Functions
# self.pred_loss = nn.CrossEntropyLoss(size_average=False)
# self.stop_loss = nn.BCEWithLogitsLoss(size_average=False)
self.pred_loss = nn.CrossEntropyLoss(reduction='sum')
self.stop_loss = nn.BCEWithLogitsLoss(reduction='sum')
def aggregate(self, hiddens, contexts, x_tree_vecs, mode):
if mode == 'word':
V, V_o = self.W, self.W_o
elif mode == 'stop':
V, V_o = self.U, self.U_o
else:
raise ValueError('aggregate mode is wrong')
tree_contexts = x_tree_vecs.index_select(0, contexts)
input_vec = torch.cat([hiddens, tree_contexts], dim=-1)
output_vec = F.relu( V(input_vec) )
return V_o(output_vec)
def forward(self, mol_batch, x_tree_vecs):
pred_hiddens,pred_contexts,pred_targets = [],[],[]
stop_hiddens,stop_contexts,stop_targets = [],[],[]
traces = []
for mol_tree in mol_batch:
s = []
dfs(s, mol_tree.nodes[0], -1)
traces.append(s)
for node in mol_tree.nodes:
node.neighbors = []
#Predict Root
batch_size = len(mol_batch)
pred_hiddens.append(create_var(torch.zeros(len(mol_batch),self.hidden_size)))
pred_targets.extend([mol_tree.nodes[0].wid for mol_tree in mol_batch])
pred_contexts.append( create_var( torch.LongTensor(range(batch_size)) ) )
max_iter = max([len(tr) for tr in traces])
padding = create_var(torch.zeros(self.hidden_size), False)
h = {}
for t in range(max_iter):
prop_list = []
batch_list = []
for i,plist in enumerate(traces):
if t < len(plist):
prop_list.append(plist[t])
batch_list.append(i)
cur_x = []
cur_h_nei,cur_o_nei = [],[]
for node_x, real_y, _ in prop_list:
#Neighbors for message passing (target not included)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != real_y.idx]
pad_len = MAX_NB - len(cur_nei)
cur_h_nei.extend(cur_nei)
cur_h_nei.extend([padding] * pad_len)
#Neighbors for stop prediction (all neighbors)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
pad_len = MAX_NB - len(cur_nei)
cur_o_nei.extend(cur_nei)
cur_o_nei.extend([padding] * pad_len)
#Current clique embedding
cur_x.append(node_x.wid)
#Clique embedding
cur_x = create_var(torch.LongTensor(cur_x))
cur_x = self.embedding(cur_x)
#Message passing
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
#Node Aggregate
cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
cur_o = cur_o_nei.sum(dim=1)
#Gather targets
pred_target,pred_list = [],[]
stop_target = []
for i,m in enumerate(prop_list):
node_x,node_y,direction = m
x,y = node_x.idx,node_y.idx
h[(x,y)] = new_h[i]
node_y.neighbors.append(node_x)
if direction == 1:
pred_target.append(node_y.wid)
pred_list.append(i)
stop_target.append(direction)
#Hidden states for stop prediction
cur_batch = create_var(torch.LongTensor(batch_list))
stop_hidden = torch.cat([cur_x,cur_o], dim=1)
stop_hiddens.append( stop_hidden )
stop_contexts.append( cur_batch )
stop_targets.extend( stop_target )
#Hidden states for clique prediction
if len(pred_list) > 0:
batch_list = [batch_list[i] for i in pred_list]
cur_batch = create_var(torch.LongTensor(batch_list))
pred_contexts.append( cur_batch )
cur_pred = create_var(torch.LongTensor(pred_list))
pred_hiddens.append( new_h.index_select(0, cur_pred) )
pred_targets.extend( pred_target )
#Last stop at root
cur_x,cur_o_nei = [],[]
for mol_tree in mol_batch:
node_x = mol_tree.nodes[0]
cur_x.append(node_x.wid)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
pad_len = MAX_NB - len(cur_nei)
cur_o_nei.extend(cur_nei)
cur_o_nei.extend([padding] * pad_len)
cur_x = create_var(torch.LongTensor(cur_x))
cur_x = self.embedding(cur_x)
cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
cur_o = cur_o_nei.sum(dim=1)
stop_hidden = torch.cat([cur_x,cur_o], dim=1)
stop_hiddens.append( stop_hidden )
stop_contexts.append( create_var( torch.LongTensor(range(batch_size)) ) )
stop_targets.extend( [0] * len(mol_batch) )
#Predict next clique
pred_contexts = torch.cat(pred_contexts, dim=0)
pred_hiddens = torch.cat(pred_hiddens, dim=0)
pred_scores = self.aggregate(pred_hiddens, pred_contexts, x_tree_vecs, 'word')
pred_targets = create_var(torch.LongTensor(pred_targets))
pred_loss = self.pred_loss(pred_scores, pred_targets) / len(mol_batch)
_,preds = torch.max(pred_scores, dim=1)
pred_acc = torch.eq(preds, pred_targets).float()
pred_acc = torch.sum(pred_acc) / pred_targets.nelement()
#Predict stop
stop_contexts = torch.cat(stop_contexts, dim=0)
stop_hiddens = torch.cat(stop_hiddens, dim=0)
stop_hiddens = F.relu( self.U_i(stop_hiddens) )
stop_scores = self.aggregate(stop_hiddens, stop_contexts, x_tree_vecs, 'stop')
stop_scores = stop_scores.squeeze(-1)
stop_targets = create_var(torch.Tensor(stop_targets))
stop_loss = self.stop_loss(stop_scores, stop_targets) / len(mol_batch)
stops = torch.ge(stop_scores, 0).float()
stop_acc = torch.eq(stops, stop_targets).float()
stop_acc = torch.sum(stop_acc) / stop_targets.nelement()
return pred_loss, stop_loss, pred_acc.item(), stop_acc.item()
def decode(self, x_tree_vecs, prob_decode):
assert x_tree_vecs.size(0) == 1
stack = []
init_hiddens = create_var( torch.zeros(1, self.hidden_size) )
zero_pad = create_var(torch.zeros(1,1,self.hidden_size))
contexts = create_var( torch.LongTensor(1).zero_() )
#Root Prediction
root_score = self.aggregate(init_hiddens, contexts, x_tree_vecs, 'word')
_,root_wid = torch.max(root_score, dim=1)
root_wid = root_wid.item()
root = MolTreeNode(self.vocab.get_smiles(root_wid))
root.wid = root_wid
root.idx = 0
stack.append( (root, self.vocab.get_slots(root.wid)) )
all_nodes = [root]
h = {}
for step in range(MAX_DECODE_LEN):
node_x,fa_slot = stack[-1]
cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors ]
if len(cur_h_nei) > 0:
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
else:
cur_h_nei = zero_pad
cur_x = create_var(torch.LongTensor([node_x.wid]))
cur_x = self.embedding(cur_x)
#Predict stop
cur_h = cur_h_nei.sum(dim=1)
stop_hiddens = torch.cat([cur_x,cur_h], dim=1)
stop_hiddens = F.relu( self.U_i(stop_hiddens) )
stop_score = self.aggregate(stop_hiddens, contexts, x_tree_vecs, 'stop')
if prob_decode:
backtrack = (torch.bernoulli( torch.sigmoid(stop_score) ).item() == 0)
else:
backtrack = (stop_score.item() < 0)
if not backtrack: #Forward: Predict next clique
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
pred_score = self.aggregate(new_h, contexts, x_tree_vecs, 'word')
if prob_decode:
sort_wid = torch.multinomial(F.softmax(pred_score, dim=1).squeeze(), 5)
else:
_,sort_wid = torch.sort(pred_score, dim=1, descending=True)
sort_wid = sort_wid.data.squeeze()
next_wid = None
for wid in sort_wid[:5]:
slots = self.vocab.get_slots(wid)
node_y = MolTreeNode(self.vocab.get_smiles(wid))
if have_slots(fa_slot, slots) and can_assemble(node_x, node_y):
next_wid = wid
next_slots = slots
break
if next_wid is None:
backtrack = True #No more children can be added
else:
node_y = MolTreeNode(self.vocab.get_smiles(next_wid))
node_y.wid = next_wid
node_y.idx = len(all_nodes)
node_y.neighbors.append(node_x)
h[(node_x.idx,node_y.idx)] = new_h[0]
stack.append( (node_y,next_slots) )
all_nodes.append(node_y)
if backtrack: #Backtrack, use if instead of else
if len(stack) == 1:
break #At root, terminate
node_fa,_ = stack[-2]
cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != node_fa.idx ]
if len(cur_h_nei) > 0:
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
else:
cur_h_nei = zero_pad
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
h[(node_x.idx,node_fa.idx)] = new_h[0]
node_fa.neighbors.append(node_x)
stack.pop()
return root, all_nodes
"""
Helper Functions:
"""
def dfs(stack, x, fa_idx):
for y in x.neighbors:
if y.idx == fa_idx: continue
stack.append( (x,y,1) )
dfs(stack, y, x.idx)
stack.append( (y,x,0) )
def have_slots(fa_slots, ch_slots):
if len(fa_slots) > 2 and len(ch_slots) > 2:
return True
matches = []
for i,s1 in enumerate(fa_slots):
a1,c1,h1 = s1
for j,s2 in enumerate(ch_slots):
a2,c2,h2 = s2
if a1 == a2 and c1 == c2 and (a1 != "C" or h1 + h2 >= 4):
matches.append( (i,j) )
if len(matches) == 0: return False
fa_match,ch_match = zip(*matches)
if len(set(fa_match)) == 1 and 1 < len(fa_slots) <= 2: #never remove atom from ring
fa_slots.pop(fa_match[0])
if len(set(ch_match)) == 1 and 1 < len(ch_slots) <= 2: #never remove atom from ring
ch_slots.pop(ch_match[0])
return True
def can_assemble(node_x, node_y):
node_x.nid = 1
node_x.is_leaf = False
set_atommap(node_x.mol, node_x.nid)
neis = node_x.neighbors + [node_y]
for i,nei in enumerate(neis):
nei.nid = i + 2
nei.is_leaf = (len(nei.neighbors) <= 1)
if nei.is_leaf:
set_atommap(nei.mol, 0)
else:
set_atommap(nei.mol, nei.nid)
neighbors = [nei for nei in neis if nei.mol.GetNumAtoms() > 1]
neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
singletons = [nei for nei in neis if nei.mol.GetNumAtoms() == 1]
neighbors = singletons + neighbors
cands,aroma_scores = enum_assemble(node_x, neighbors)
return len(cands) > 0# and sum(aroma_scores) >= 0
if __name__ == "__main__":
smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1","O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2", "ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3", "C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1", 'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1', "O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"]
for s in smiles:
print(s)
tree = MolTree(s)
for i,node in enumerate(tree.nodes):
node.idx = i
stack = []
dfs(stack, tree.nodes[0], -1)
for x,y,d in stack:
print(x.smiles, y.smiles, d)
print('------------------------------')
|