File size: 4,471 Bytes
a3ea5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
from mol_tree import Vocab, MolTree
from nnutils import create_var, index_select_ND

class JTNNEncoder(nn.Module):

    def __init__(self, hidden_size, depth, embedding):
        super(JTNNEncoder, self).__init__()
        self.hidden_size = hidden_size
        self.depth = depth

        self.embedding = embedding
        self.outputNN = nn.Sequential(
            nn.Linear(2 * hidden_size, hidden_size),
            nn.ReLU()
        )
        self.GRU = GraphGRU(hidden_size, hidden_size, depth=depth)

    def forward(self, fnode, fmess, node_graph, mess_graph, scope):
        fnode = create_var(fnode)
        fmess = create_var(fmess)
        node_graph = create_var(node_graph)
        mess_graph = create_var(mess_graph)
        messages = create_var(torch.zeros(mess_graph.size(0), self.hidden_size))

        fnode = self.embedding(fnode)
        fmess = index_select_ND(fnode, 0, fmess)
        messages = self.GRU(messages, fmess, mess_graph)

        mess_nei = index_select_ND(messages, 0, node_graph)
        node_vecs = torch.cat([fnode, mess_nei.sum(dim=1)], dim=-1)
        node_vecs = self.outputNN(node_vecs)

        max_len = max([x for _,x in scope])
        batch_vecs = []
        for st,le in scope:
            cur_vecs = node_vecs[st] #Root is the first node
            batch_vecs.append( cur_vecs )

        tree_vecs = torch.stack(batch_vecs, dim=0)
        return tree_vecs, messages

    @staticmethod
    def tensorize(tree_batch):
        node_batch = [] 
        scope = []
        for tree in tree_batch:
            scope.append( (len(node_batch), len(tree.nodes)) )
            node_batch.extend(tree.nodes)

        return JTNNEncoder.tensorize_nodes(node_batch, scope)
    
    @staticmethod
    def tensorize_nodes(node_batch, scope):
        messages,mess_dict = [None],{}
        fnode = []
        for x in node_batch:
            fnode.append(x.wid)
            for y in x.neighbors:
                mess_dict[(x.idx,y.idx)] = len(messages)
                messages.append( (x,y) )

        node_graph = [[] for i in range(len(node_batch))]
        mess_graph = [[] for i in range(len(messages))]
        fmess = [0] * len(messages)

        for x,y in messages[1:]:
            mid1 = mess_dict[(x.idx,y.idx)]
            fmess[mid1] = x.idx 
            node_graph[y.idx].append(mid1)
            for z in y.neighbors:
                if z.idx == x.idx: continue
                mid2 = mess_dict[(y.idx,z.idx)]
                mess_graph[mid2].append(mid1)

        max_len = max([len(t) for t in node_graph] + [1])
        for t in node_graph:
            pad_len = max_len - len(t)
            t.extend([0] * pad_len)

        max_len = max([len(t) for t in mess_graph] + [1])
        for t in mess_graph:
            pad_len = max_len - len(t)
            t.extend([0] * pad_len)

        mess_graph = torch.LongTensor(mess_graph)
        node_graph = torch.LongTensor(node_graph)
        fmess = torch.LongTensor(fmess)
        fnode = torch.LongTensor(fnode)
        return (fnode, fmess, node_graph, mess_graph, scope), mess_dict

class GraphGRU(nn.Module):

    def __init__(self, input_size, hidden_size, depth):
        super(GraphGRU, self).__init__()
        self.hidden_size = hidden_size
        self.input_size = input_size
        self.depth = depth

        self.W_z = nn.Linear(input_size + hidden_size, hidden_size)
        self.W_r = nn.Linear(input_size, hidden_size, bias=False)
        self.U_r = nn.Linear(hidden_size, hidden_size)
        self.W_h = nn.Linear(input_size + hidden_size, hidden_size)

    def forward(self, h, x, mess_graph):
        mask = torch.ones(h.size(0), 1)
        mask[0] = 0 #first vector is padding
        mask = create_var(mask)
        for it in range(self.depth):
            h_nei = index_select_ND(h, 0, mess_graph)
            sum_h = h_nei.sum(dim=1)
            z_input = torch.cat([x, sum_h], dim=1)
            z = F.sigmoid(self.W_z(z_input))

            r_1 = self.W_r(x).view(-1, 1, self.hidden_size)
            r_2 = self.U_r(h_nei)
            r = F.sigmoid(r_1 + r_2)
            
            gated_h = r * h_nei
            sum_gated_h = gated_h.sum(dim=1)
            h_input = torch.cat([x, sum_gated_h], dim=1)
            pre_h = F.tanh(self.W_h(h_input))
            h = (1.0 - z) * sum_h + z * pre_h
            h = h * mask

        return h