File size: 16,774 Bytes
a3ea5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import rdkit
import rdkit.Chem as Chem
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions
from vocab import Vocab

MST_MAX_WEIGHT = 100 
MAX_NCAND = 2000

def set_atommap(mol, num=0):
    for atom in mol.GetAtoms():
        atom.SetAtomMapNum(num)

def get_mol(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol is None: 
        return None
    Chem.Kekulize(mol, clearAromaticFlags=True)
    return mol

def get_smiles(mol):
    return Chem.MolToSmiles(mol, kekuleSmiles=True)

def decode_stereo(smiles2D):
    mol = Chem.MolFromSmiles(smiles2D)
    dec_isomers = list(EnumerateStereoisomers(mol))

    dec_isomers = [Chem.MolFromSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) for mol in dec_isomers]
    smiles3D = [Chem.MolToSmiles(mol, isomericSmiles=True) for mol in dec_isomers]

    chiralN = [atom.GetIdx() for atom in dec_isomers[0].GetAtoms() if int(atom.GetChiralTag()) > 0 and atom.GetSymbol() == "N"]
    if len(chiralN) > 0:
        for mol in dec_isomers:
            for idx in chiralN:
                mol.GetAtomWithIdx(idx).SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
            smiles3D.append(Chem.MolToSmiles(mol, isomericSmiles=True))

    return smiles3D

def sanitize(mol):
    try:
        smiles = get_smiles(mol)
        mol = get_mol(smiles)
    except Exception as e:
        return None
    return mol

def copy_atom(atom):
    new_atom = Chem.Atom(atom.GetSymbol())
    new_atom.SetFormalCharge(atom.GetFormalCharge())
    new_atom.SetAtomMapNum(atom.GetAtomMapNum())
    return new_atom

def copy_edit_mol(mol):
    new_mol = Chem.RWMol(Chem.MolFromSmiles(''))
    for atom in mol.GetAtoms():
        new_atom = copy_atom(atom)
        new_mol.AddAtom(new_atom)
    for bond in mol.GetBonds():
        a1 = bond.GetBeginAtom().GetIdx()
        a2 = bond.GetEndAtom().GetIdx()
        bt = bond.GetBondType()
        new_mol.AddBond(a1, a2, bt)
    return new_mol

def get_clique_mol(mol, atoms):
    smiles = Chem.MolFragmentToSmiles(mol, atoms, kekuleSmiles=True)
    new_mol = Chem.MolFromSmiles(smiles, sanitize=False)
    new_mol = copy_edit_mol(new_mol).GetMol()
    new_mol = sanitize(new_mol) #We assume this is not None
    return new_mol

def tree_decomp(mol):
    n_atoms = mol.GetNumAtoms()
    if n_atoms == 1: #special case
        return [[0]], []

    cliques = []
    for bond in mol.GetBonds():
        a1 = bond.GetBeginAtom().GetIdx()
        a2 = bond.GetEndAtom().GetIdx()
        if not bond.IsInRing():
            cliques.append([a1,a2])

    ssr = [list(x) for x in Chem.GetSymmSSSR(mol)]
    cliques.extend(ssr)

    nei_list = [[] for i in range(n_atoms)]
    for i in range(len(cliques)):
        for atom in cliques[i]:
            nei_list[atom].append(i)
    
    #Merge Rings with intersection > 2 atoms
    for i in range(len(cliques)):
        if len(cliques[i]) <= 2: continue
        for atom in cliques[i]:
            for j in nei_list[atom]:
                if i >= j or len(cliques[j]) <= 2: continue
                inter = set(cliques[i]) & set(cliques[j])
                if len(inter) > 2:
                    cliques[i].extend(cliques[j])
                    cliques[i] = list(set(cliques[i]))
                    cliques[j] = []
    
    cliques = [c for c in cliques if len(c) > 0]
    nei_list = [[] for i in range(n_atoms)]
    for i in range(len(cliques)):
        for atom in cliques[i]:
            nei_list[atom].append(i)
    
    #Build edges and add singleton cliques
    edges = defaultdict(int)
    for atom in range(n_atoms):
        if len(nei_list[atom]) <= 1: 
            continue
        cnei = nei_list[atom]
        bonds = [c for c in cnei if len(cliques[c]) == 2]
        rings = [c for c in cnei if len(cliques[c]) > 4]
        if len(bonds) > 2 or (len(bonds) == 2 and len(cnei) > 2): #In general, if len(cnei) >= 3, a singleton should be added, but 1 bond + 2 ring is currently not dealt with.
            cliques.append([atom])
            c2 = len(cliques) - 1
            for c1 in cnei:
                edges[(c1,c2)] = 1
        elif len(rings) > 2: #Multiple (n>2) complex rings
            cliques.append([atom])
            c2 = len(cliques) - 1
            for c1 in cnei:
                edges[(c1,c2)] = MST_MAX_WEIGHT - 1
        else:
            for i in range(len(cnei)):
                for j in range(i + 1, len(cnei)):
                    c1,c2 = cnei[i],cnei[j]
                    inter = set(cliques[c1]) & set(cliques[c2])
                    if edges[(c1,c2)] < len(inter):
                        edges[(c1,c2)] = len(inter) #cnei[i] < cnei[j] by construction

    edges = [u + (MST_MAX_WEIGHT-v,) for u,v in edges.items()]
    if len(edges) == 0:
        return cliques, edges

    #Compute Maximum Spanning Tree
    row,col,data = zip(*edges)
    n_clique = len(cliques)
    clique_graph = csr_matrix( (data,(row,col)), shape=(n_clique,n_clique) )
    junc_tree = minimum_spanning_tree(clique_graph)
    row,col = junc_tree.nonzero()
    edges = [(row[i],col[i]) for i in range(len(row))]
    return (cliques, edges)

def atom_equal(a1, a2):
    return a1.GetSymbol() == a2.GetSymbol() and a1.GetFormalCharge() == a2.GetFormalCharge()

#Bond type not considered because all aromatic (so SINGLE matches DOUBLE)
def ring_bond_equal(b1, b2, reverse=False):
    b1 = (b1.GetBeginAtom(), b1.GetEndAtom())
    if reverse:
        b2 = (b2.GetEndAtom(), b2.GetBeginAtom())
    else:
        b2 = (b2.GetBeginAtom(), b2.GetEndAtom())
    return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1])

def attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap):
    prev_nids = [node.nid for node in prev_nodes]
    for nei_node in prev_nodes + neighbors:
        nei_id,nei_mol = nei_node.nid,nei_node.mol
        amap = nei_amap[nei_id]
        for atom in nei_mol.GetAtoms():
            if atom.GetIdx() not in amap:
                new_atom = copy_atom(atom)
                amap[atom.GetIdx()] = ctr_mol.AddAtom(new_atom)

        if nei_mol.GetNumBonds() == 0:
            nei_atom = nei_mol.GetAtomWithIdx(0)
            ctr_atom = ctr_mol.GetAtomWithIdx(amap[0])
            ctr_atom.SetAtomMapNum(nei_atom.GetAtomMapNum())
        else:
            for bond in nei_mol.GetBonds():
                a1 = amap[bond.GetBeginAtom().GetIdx()]
                a2 = amap[bond.GetEndAtom().GetIdx()]
                if ctr_mol.GetBondBetweenAtoms(a1, a2) is None:
                    ctr_mol.AddBond(a1, a2, bond.GetBondType())
                elif nei_id in prev_nids: #father node overrides
                    ctr_mol.RemoveBond(a1, a2)
                    ctr_mol.AddBond(a1, a2, bond.GetBondType())
    return ctr_mol

def local_attach(ctr_mol, neighbors, prev_nodes, amap_list):
    ctr_mol = copy_edit_mol(ctr_mol)
    nei_amap = {nei.nid:{} for nei in prev_nodes + neighbors}

    for nei_id,ctr_atom,nei_atom in amap_list:
        nei_amap[nei_id][nei_atom] = ctr_atom

    ctr_mol = attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap)
    return ctr_mol.GetMol()

#This version records idx mapping between ctr_mol and nei_mol
def enum_attach(ctr_mol, nei_node, amap, singletons):
    nei_mol,nei_idx = nei_node.mol,nei_node.nid
    att_confs = []
    black_list = [atom_idx for nei_id,atom_idx,_ in amap if nei_id in singletons]
    ctr_atoms = [atom for atom in ctr_mol.GetAtoms() if atom.GetIdx() not in black_list]
    ctr_bonds = [bond for bond in ctr_mol.GetBonds()]

    if nei_mol.GetNumBonds() == 0: #neighbor singleton
        nei_atom = nei_mol.GetAtomWithIdx(0)
        used_list = [atom_idx for _,atom_idx,_ in amap]
        for atom in ctr_atoms:
            if atom_equal(atom, nei_atom) and atom.GetIdx() not in used_list:
                new_amap = amap + [(nei_idx, atom.GetIdx(), 0)]
                att_confs.append( new_amap )
   
    elif nei_mol.GetNumBonds() == 1: #neighbor is a bond
        bond = nei_mol.GetBondWithIdx(0)
        bond_val = int(bond.GetBondTypeAsDouble())
        b1,b2 = bond.GetBeginAtom(), bond.GetEndAtom()

        for atom in ctr_atoms: 
            #Optimize if atom is carbon (other atoms may change valence)
            if atom.GetAtomicNum() == 6 and atom.GetTotalNumHs() < bond_val:
                continue
            if atom_equal(atom, b1):
                new_amap = amap + [(nei_idx, atom.GetIdx(), b1.GetIdx())]
                att_confs.append( new_amap )
            elif atom_equal(atom, b2):
                new_amap = amap + [(nei_idx, atom.GetIdx(), b2.GetIdx())]
                att_confs.append( new_amap )
    else: 
        #intersection is an atom
        for a1 in ctr_atoms:
            for a2 in nei_mol.GetAtoms():
                if atom_equal(a1, a2):
                    #Optimize if atom is carbon (other atoms may change valence)
                    if a1.GetAtomicNum() == 6 and a1.GetTotalNumHs() + a2.GetTotalNumHs() < 4:
                        continue
                    new_amap = amap + [(nei_idx, a1.GetIdx(), a2.GetIdx())]
                    att_confs.append( new_amap )

        #intersection is an bond
        if ctr_mol.GetNumBonds() > 1:
            for b1 in ctr_bonds:
                for b2 in nei_mol.GetBonds():
                    if ring_bond_equal(b1, b2):
                        new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetBeginAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetEndAtom().GetIdx())]
                        att_confs.append( new_amap )

                    if ring_bond_equal(b1, b2, reverse=True):
                        new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetEndAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetBeginAtom().GetIdx())]
                        att_confs.append( new_amap )
    return att_confs

#Try rings first: Speed-Up 
def enum_assemble(node, neighbors, prev_nodes=[], prev_amap=[]):
    all_attach_confs = []
    singletons = [nei_node.nid for nei_node in neighbors + prev_nodes if nei_node.mol.GetNumAtoms() == 1]

    def search(cur_amap, depth):
        if len(all_attach_confs) > MAX_NCAND:
            return
        if depth == len(neighbors):
            all_attach_confs.append(cur_amap)
            return

        nei_node = neighbors[depth]
        cand_amap = enum_attach(node.mol, nei_node, cur_amap, singletons)
        cand_smiles = set()
        candidates = []
        for amap in cand_amap:
            cand_mol = local_attach(node.mol, neighbors[:depth+1], prev_nodes, amap)
            cand_mol = sanitize(cand_mol)
            if cand_mol is None:
                continue
            smiles = get_smiles(cand_mol)
            if smiles in cand_smiles:
                continue
            cand_smiles.add(smiles)
            candidates.append(amap)

        if len(candidates) == 0:
            return

        for new_amap in candidates:
            search(new_amap, depth + 1)

    search(prev_amap, 0)
    cand_smiles = set()
    candidates = []
    aroma_score = []
    for amap in all_attach_confs:
        cand_mol = local_attach(node.mol, neighbors, prev_nodes, amap)
        cand_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cand_mol))
        smiles = Chem.MolToSmiles(cand_mol)
        if smiles in cand_smiles or check_singleton(cand_mol, node, neighbors) == False:
            continue
        cand_smiles.add(smiles)
        candidates.append( (smiles,amap) )
        aroma_score.append( check_aroma(cand_mol, node, neighbors) )

    return candidates, aroma_score 

def check_singleton(cand_mol, ctr_node, nei_nodes):
    rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() > 2]
    singletons = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() == 1]
    if len(singletons) > 0 or len(rings) == 0: return True

    n_leaf2_atoms = 0
    for atom in cand_mol.GetAtoms():
        nei_leaf_atoms = [a for a in atom.GetNeighbors() if not a.IsInRing()] #a.GetDegree() == 1]
        if len(nei_leaf_atoms) > 1: 
            n_leaf2_atoms += 1

    return n_leaf2_atoms == 0

def check_aroma(cand_mol, ctr_node, nei_nodes):
    rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() >= 3]
    if len(rings) < 2: return 0 #Only multi-ring system needs to be checked

    get_nid = lambda x: 0 if x.is_leaf else x.nid
    benzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.benzynes] 
    penzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.penzynes] 
    if len(benzynes) + len(penzynes) == 0: 
        return 0 #No specific aromatic rings

    n_aroma_atoms = 0
    for atom in cand_mol.GetAtoms():
        if atom.GetAtomMapNum() in benzynes+penzynes and atom.GetIsAromatic():
            n_aroma_atoms += 1

    if n_aroma_atoms >= len(benzynes) * 4 + len(penzynes) * 3:
        return 1000
    else:
        return -0.001 

#Only used for debugging purpose
def dfs_assemble(cur_mol, global_amap, fa_amap, cur_node, fa_node):
    fa_nid = fa_node.nid if fa_node is not None else -1
    prev_nodes = [fa_node] if fa_node is not None else []

    children = [nei for nei in cur_node.neighbors if nei.nid != fa_nid]
    neighbors = [nei for nei in children if nei.mol.GetNumAtoms() > 1]
    neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
    singletons = [nei for nei in children if nei.mol.GetNumAtoms() == 1]
    neighbors = singletons + neighbors

    cur_amap = [(fa_nid,a2,a1) for nid,a1,a2 in fa_amap if nid == cur_node.nid]
    cands = enum_assemble(cur_node, neighbors, prev_nodes, cur_amap)

    cand_smiles,cand_amap = zip(*cands)
    label_idx = cand_smiles.index(cur_node.label)
    label_amap = cand_amap[label_idx]

    for nei_id,ctr_atom,nei_atom in label_amap:
        if nei_id == fa_nid:
            continue
        global_amap[nei_id][nei_atom] = global_amap[cur_node.nid][ctr_atom]
    
    cur_mol = attach_mols(cur_mol, children, [], global_amap) #father is already attached
    for nei_node in children:
        if not nei_node.is_leaf:
            dfs_assemble(cur_mol, global_amap, label_amap, nei_node, cur_node)

if __name__ == "__main__":
    import sys
    from mol_tree import MolTree
    lg = rdkit.RDLogger.logger() 
    lg.setLevel(rdkit.RDLogger.CRITICAL)
    
    smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1","O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2", "ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3", "C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1", 'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1', "O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"]

    def tree_test():
        for s in sys.stdin:
            s = s.split()[0]
            tree = MolTree(s)
            print('-------------------------------------------')
            print(s)
            for node in tree.nodes:
                print(node.smiles, [x.smiles for x in node.neighbors])

    def decode_test():
        wrong = 0
        for tot,s in enumerate(sys.stdin):
            s = s.split()[0]
            tree = MolTree(s)
            tree.recover()

            cur_mol = copy_edit_mol(tree.nodes[0].mol)
            global_amap = [{}] + [{} for node in tree.nodes]
            global_amap[1] = {atom.GetIdx():atom.GetIdx() for atom in cur_mol.GetAtoms()}

            dfs_assemble(cur_mol, global_amap, [], tree.nodes[0], None)

            cur_mol = cur_mol.GetMol()
            cur_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cur_mol))
            set_atommap(cur_mol)
            dec_smiles = Chem.MolToSmiles(cur_mol)

            gold_smiles = Chem.MolToSmiles(Chem.MolFromSmiles(s))
            if gold_smiles != dec_smiles:
                print(gold_smiles, dec_smiles)
                wrong += 1
            print(wrong, tot + 1)

    def enum_test():
        for s in sys.stdin:
            s = s.split()[0]
            tree = MolTree(s)
            tree.recover()
            tree.assemble()
            for node in tree.nodes:
                if node.label not in node.cands:
                    print(tree.smiles)
                    print(node.smiles, [x.smiles for x in node.neighbors])
                    print(node.label, len(node.cands))

    def count():
        cnt,n = 0,0
        for s in sys.stdin:
            s = s.split()[0]
            tree = MolTree(s)
            tree.recover()
            tree.assemble()
            for node in tree.nodes:
                cnt += len(node.cands)
            n += len(tree.nodes)
            #print cnt * 1.0 / n
    
    count()