Spaces:
Sleeping
Sleeping
File size: 16,774 Bytes
a3ea5d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import rdkit
import rdkit.Chem as Chem
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions
from vocab import Vocab
MST_MAX_WEIGHT = 100
MAX_NCAND = 2000
def set_atommap(mol, num=0):
for atom in mol.GetAtoms():
atom.SetAtomMapNum(num)
def get_mol(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
Chem.Kekulize(mol, clearAromaticFlags=True)
return mol
def get_smiles(mol):
return Chem.MolToSmiles(mol, kekuleSmiles=True)
def decode_stereo(smiles2D):
mol = Chem.MolFromSmiles(smiles2D)
dec_isomers = list(EnumerateStereoisomers(mol))
dec_isomers = [Chem.MolFromSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) for mol in dec_isomers]
smiles3D = [Chem.MolToSmiles(mol, isomericSmiles=True) for mol in dec_isomers]
chiralN = [atom.GetIdx() for atom in dec_isomers[0].GetAtoms() if int(atom.GetChiralTag()) > 0 and atom.GetSymbol() == "N"]
if len(chiralN) > 0:
for mol in dec_isomers:
for idx in chiralN:
mol.GetAtomWithIdx(idx).SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
smiles3D.append(Chem.MolToSmiles(mol, isomericSmiles=True))
return smiles3D
def sanitize(mol):
try:
smiles = get_smiles(mol)
mol = get_mol(smiles)
except Exception as e:
return None
return mol
def copy_atom(atom):
new_atom = Chem.Atom(atom.GetSymbol())
new_atom.SetFormalCharge(atom.GetFormalCharge())
new_atom.SetAtomMapNum(atom.GetAtomMapNum())
return new_atom
def copy_edit_mol(mol):
new_mol = Chem.RWMol(Chem.MolFromSmiles(''))
for atom in mol.GetAtoms():
new_atom = copy_atom(atom)
new_mol.AddAtom(new_atom)
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
bt = bond.GetBondType()
new_mol.AddBond(a1, a2, bt)
return new_mol
def get_clique_mol(mol, atoms):
smiles = Chem.MolFragmentToSmiles(mol, atoms, kekuleSmiles=True)
new_mol = Chem.MolFromSmiles(smiles, sanitize=False)
new_mol = copy_edit_mol(new_mol).GetMol()
new_mol = sanitize(new_mol) #We assume this is not None
return new_mol
def tree_decomp(mol):
n_atoms = mol.GetNumAtoms()
if n_atoms == 1: #special case
return [[0]], []
cliques = []
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
if not bond.IsInRing():
cliques.append([a1,a2])
ssr = [list(x) for x in Chem.GetSymmSSSR(mol)]
cliques.extend(ssr)
nei_list = [[] for i in range(n_atoms)]
for i in range(len(cliques)):
for atom in cliques[i]:
nei_list[atom].append(i)
#Merge Rings with intersection > 2 atoms
for i in range(len(cliques)):
if len(cliques[i]) <= 2: continue
for atom in cliques[i]:
for j in nei_list[atom]:
if i >= j or len(cliques[j]) <= 2: continue
inter = set(cliques[i]) & set(cliques[j])
if len(inter) > 2:
cliques[i].extend(cliques[j])
cliques[i] = list(set(cliques[i]))
cliques[j] = []
cliques = [c for c in cliques if len(c) > 0]
nei_list = [[] for i in range(n_atoms)]
for i in range(len(cliques)):
for atom in cliques[i]:
nei_list[atom].append(i)
#Build edges and add singleton cliques
edges = defaultdict(int)
for atom in range(n_atoms):
if len(nei_list[atom]) <= 1:
continue
cnei = nei_list[atom]
bonds = [c for c in cnei if len(cliques[c]) == 2]
rings = [c for c in cnei if len(cliques[c]) > 4]
if len(bonds) > 2 or (len(bonds) == 2 and len(cnei) > 2): #In general, if len(cnei) >= 3, a singleton should be added, but 1 bond + 2 ring is currently not dealt with.
cliques.append([atom])
c2 = len(cliques) - 1
for c1 in cnei:
edges[(c1,c2)] = 1
elif len(rings) > 2: #Multiple (n>2) complex rings
cliques.append([atom])
c2 = len(cliques) - 1
for c1 in cnei:
edges[(c1,c2)] = MST_MAX_WEIGHT - 1
else:
for i in range(len(cnei)):
for j in range(i + 1, len(cnei)):
c1,c2 = cnei[i],cnei[j]
inter = set(cliques[c1]) & set(cliques[c2])
if edges[(c1,c2)] < len(inter):
edges[(c1,c2)] = len(inter) #cnei[i] < cnei[j] by construction
edges = [u + (MST_MAX_WEIGHT-v,) for u,v in edges.items()]
if len(edges) == 0:
return cliques, edges
#Compute Maximum Spanning Tree
row,col,data = zip(*edges)
n_clique = len(cliques)
clique_graph = csr_matrix( (data,(row,col)), shape=(n_clique,n_clique) )
junc_tree = minimum_spanning_tree(clique_graph)
row,col = junc_tree.nonzero()
edges = [(row[i],col[i]) for i in range(len(row))]
return (cliques, edges)
def atom_equal(a1, a2):
return a1.GetSymbol() == a2.GetSymbol() and a1.GetFormalCharge() == a2.GetFormalCharge()
#Bond type not considered because all aromatic (so SINGLE matches DOUBLE)
def ring_bond_equal(b1, b2, reverse=False):
b1 = (b1.GetBeginAtom(), b1.GetEndAtom())
if reverse:
b2 = (b2.GetEndAtom(), b2.GetBeginAtom())
else:
b2 = (b2.GetBeginAtom(), b2.GetEndAtom())
return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1])
def attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap):
prev_nids = [node.nid for node in prev_nodes]
for nei_node in prev_nodes + neighbors:
nei_id,nei_mol = nei_node.nid,nei_node.mol
amap = nei_amap[nei_id]
for atom in nei_mol.GetAtoms():
if atom.GetIdx() not in amap:
new_atom = copy_atom(atom)
amap[atom.GetIdx()] = ctr_mol.AddAtom(new_atom)
if nei_mol.GetNumBonds() == 0:
nei_atom = nei_mol.GetAtomWithIdx(0)
ctr_atom = ctr_mol.GetAtomWithIdx(amap[0])
ctr_atom.SetAtomMapNum(nei_atom.GetAtomMapNum())
else:
for bond in nei_mol.GetBonds():
a1 = amap[bond.GetBeginAtom().GetIdx()]
a2 = amap[bond.GetEndAtom().GetIdx()]
if ctr_mol.GetBondBetweenAtoms(a1, a2) is None:
ctr_mol.AddBond(a1, a2, bond.GetBondType())
elif nei_id in prev_nids: #father node overrides
ctr_mol.RemoveBond(a1, a2)
ctr_mol.AddBond(a1, a2, bond.GetBondType())
return ctr_mol
def local_attach(ctr_mol, neighbors, prev_nodes, amap_list):
ctr_mol = copy_edit_mol(ctr_mol)
nei_amap = {nei.nid:{} for nei in prev_nodes + neighbors}
for nei_id,ctr_atom,nei_atom in amap_list:
nei_amap[nei_id][nei_atom] = ctr_atom
ctr_mol = attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap)
return ctr_mol.GetMol()
#This version records idx mapping between ctr_mol and nei_mol
def enum_attach(ctr_mol, nei_node, amap, singletons):
nei_mol,nei_idx = nei_node.mol,nei_node.nid
att_confs = []
black_list = [atom_idx for nei_id,atom_idx,_ in amap if nei_id in singletons]
ctr_atoms = [atom for atom in ctr_mol.GetAtoms() if atom.GetIdx() not in black_list]
ctr_bonds = [bond for bond in ctr_mol.GetBonds()]
if nei_mol.GetNumBonds() == 0: #neighbor singleton
nei_atom = nei_mol.GetAtomWithIdx(0)
used_list = [atom_idx for _,atom_idx,_ in amap]
for atom in ctr_atoms:
if atom_equal(atom, nei_atom) and atom.GetIdx() not in used_list:
new_amap = amap + [(nei_idx, atom.GetIdx(), 0)]
att_confs.append( new_amap )
elif nei_mol.GetNumBonds() == 1: #neighbor is a bond
bond = nei_mol.GetBondWithIdx(0)
bond_val = int(bond.GetBondTypeAsDouble())
b1,b2 = bond.GetBeginAtom(), bond.GetEndAtom()
for atom in ctr_atoms:
#Optimize if atom is carbon (other atoms may change valence)
if atom.GetAtomicNum() == 6 and atom.GetTotalNumHs() < bond_val:
continue
if atom_equal(atom, b1):
new_amap = amap + [(nei_idx, atom.GetIdx(), b1.GetIdx())]
att_confs.append( new_amap )
elif atom_equal(atom, b2):
new_amap = amap + [(nei_idx, atom.GetIdx(), b2.GetIdx())]
att_confs.append( new_amap )
else:
#intersection is an atom
for a1 in ctr_atoms:
for a2 in nei_mol.GetAtoms():
if atom_equal(a1, a2):
#Optimize if atom is carbon (other atoms may change valence)
if a1.GetAtomicNum() == 6 and a1.GetTotalNumHs() + a2.GetTotalNumHs() < 4:
continue
new_amap = amap + [(nei_idx, a1.GetIdx(), a2.GetIdx())]
att_confs.append( new_amap )
#intersection is an bond
if ctr_mol.GetNumBonds() > 1:
for b1 in ctr_bonds:
for b2 in nei_mol.GetBonds():
if ring_bond_equal(b1, b2):
new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetBeginAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetEndAtom().GetIdx())]
att_confs.append( new_amap )
if ring_bond_equal(b1, b2, reverse=True):
new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetEndAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetBeginAtom().GetIdx())]
att_confs.append( new_amap )
return att_confs
#Try rings first: Speed-Up
def enum_assemble(node, neighbors, prev_nodes=[], prev_amap=[]):
all_attach_confs = []
singletons = [nei_node.nid for nei_node in neighbors + prev_nodes if nei_node.mol.GetNumAtoms() == 1]
def search(cur_amap, depth):
if len(all_attach_confs) > MAX_NCAND:
return
if depth == len(neighbors):
all_attach_confs.append(cur_amap)
return
nei_node = neighbors[depth]
cand_amap = enum_attach(node.mol, nei_node, cur_amap, singletons)
cand_smiles = set()
candidates = []
for amap in cand_amap:
cand_mol = local_attach(node.mol, neighbors[:depth+1], prev_nodes, amap)
cand_mol = sanitize(cand_mol)
if cand_mol is None:
continue
smiles = get_smiles(cand_mol)
if smiles in cand_smiles:
continue
cand_smiles.add(smiles)
candidates.append(amap)
if len(candidates) == 0:
return
for new_amap in candidates:
search(new_amap, depth + 1)
search(prev_amap, 0)
cand_smiles = set()
candidates = []
aroma_score = []
for amap in all_attach_confs:
cand_mol = local_attach(node.mol, neighbors, prev_nodes, amap)
cand_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cand_mol))
smiles = Chem.MolToSmiles(cand_mol)
if smiles in cand_smiles or check_singleton(cand_mol, node, neighbors) == False:
continue
cand_smiles.add(smiles)
candidates.append( (smiles,amap) )
aroma_score.append( check_aroma(cand_mol, node, neighbors) )
return candidates, aroma_score
def check_singleton(cand_mol, ctr_node, nei_nodes):
rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() > 2]
singletons = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() == 1]
if len(singletons) > 0 or len(rings) == 0: return True
n_leaf2_atoms = 0
for atom in cand_mol.GetAtoms():
nei_leaf_atoms = [a for a in atom.GetNeighbors() if not a.IsInRing()] #a.GetDegree() == 1]
if len(nei_leaf_atoms) > 1:
n_leaf2_atoms += 1
return n_leaf2_atoms == 0
def check_aroma(cand_mol, ctr_node, nei_nodes):
rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() >= 3]
if len(rings) < 2: return 0 #Only multi-ring system needs to be checked
get_nid = lambda x: 0 if x.is_leaf else x.nid
benzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.benzynes]
penzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.penzynes]
if len(benzynes) + len(penzynes) == 0:
return 0 #No specific aromatic rings
n_aroma_atoms = 0
for atom in cand_mol.GetAtoms():
if atom.GetAtomMapNum() in benzynes+penzynes and atom.GetIsAromatic():
n_aroma_atoms += 1
if n_aroma_atoms >= len(benzynes) * 4 + len(penzynes) * 3:
return 1000
else:
return -0.001
#Only used for debugging purpose
def dfs_assemble(cur_mol, global_amap, fa_amap, cur_node, fa_node):
fa_nid = fa_node.nid if fa_node is not None else -1
prev_nodes = [fa_node] if fa_node is not None else []
children = [nei for nei in cur_node.neighbors if nei.nid != fa_nid]
neighbors = [nei for nei in children if nei.mol.GetNumAtoms() > 1]
neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
singletons = [nei for nei in children if nei.mol.GetNumAtoms() == 1]
neighbors = singletons + neighbors
cur_amap = [(fa_nid,a2,a1) for nid,a1,a2 in fa_amap if nid == cur_node.nid]
cands = enum_assemble(cur_node, neighbors, prev_nodes, cur_amap)
cand_smiles,cand_amap = zip(*cands)
label_idx = cand_smiles.index(cur_node.label)
label_amap = cand_amap[label_idx]
for nei_id,ctr_atom,nei_atom in label_amap:
if nei_id == fa_nid:
continue
global_amap[nei_id][nei_atom] = global_amap[cur_node.nid][ctr_atom]
cur_mol = attach_mols(cur_mol, children, [], global_amap) #father is already attached
for nei_node in children:
if not nei_node.is_leaf:
dfs_assemble(cur_mol, global_amap, label_amap, nei_node, cur_node)
if __name__ == "__main__":
import sys
from mol_tree import MolTree
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1","O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2", "ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3", "C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1", 'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1', "O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"]
def tree_test():
for s in sys.stdin:
s = s.split()[0]
tree = MolTree(s)
print('-------------------------------------------')
print(s)
for node in tree.nodes:
print(node.smiles, [x.smiles for x in node.neighbors])
def decode_test():
wrong = 0
for tot,s in enumerate(sys.stdin):
s = s.split()[0]
tree = MolTree(s)
tree.recover()
cur_mol = copy_edit_mol(tree.nodes[0].mol)
global_amap = [{}] + [{} for node in tree.nodes]
global_amap[1] = {atom.GetIdx():atom.GetIdx() for atom in cur_mol.GetAtoms()}
dfs_assemble(cur_mol, global_amap, [], tree.nodes[0], None)
cur_mol = cur_mol.GetMol()
cur_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cur_mol))
set_atommap(cur_mol)
dec_smiles = Chem.MolToSmiles(cur_mol)
gold_smiles = Chem.MolToSmiles(Chem.MolFromSmiles(s))
if gold_smiles != dec_smiles:
print(gold_smiles, dec_smiles)
wrong += 1
print(wrong, tot + 1)
def enum_test():
for s in sys.stdin:
s = s.split()[0]
tree = MolTree(s)
tree.recover()
tree.assemble()
for node in tree.nodes:
if node.label not in node.cands:
print(tree.smiles)
print(node.smiles, [x.smiles for x in node.neighbors])
print(node.label, len(node.cands))
def count():
cnt,n = 0,0
for s in sys.stdin:
s = s.split()[0]
tree = MolTree(s)
tree.recover()
tree.assemble()
for node in tree.nodes:
cnt += len(node.cands)
n += len(tree.nodes)
#print cnt * 1.0 / n
count()
|