File size: 7,336 Bytes
a3ea5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
from torch.utils.data import Dataset, DataLoader
from mol_tree import MolTree
import numpy as np
from jtnn_enc import JTNNEncoder
from mpn import MPN
from jtmpn import JTMPN
import pickle
import os, random

class PairTreeFolder(object):

    def __init__(self, data_folder, vocab, batch_size, num_workers=4, shuffle=True, y_assm=True, replicate=None):
        self.data_folder = data_folder
        self.data_files = [fn for fn in os.listdir(data_folder)]
        self.batch_size = batch_size
        self.vocab = vocab
        self.num_workers = num_workers
        self.y_assm = y_assm
        self.shuffle = shuffle

        if replicate is not None: #expand is int
            self.data_files = self.data_files * replicate

    def __iter__(self):
        for fn in self.data_files:
            fn = os.path.join(self.data_folder, fn)
            with open(fn, 'rb') as f:
                data = pickle.load(f)

            if self.shuffle: 
                random.shuffle(data) #shuffle data before batch

            batches = [data[i : i + self.batch_size] for i in range(0, len(data), self.batch_size)]
            if len(batches[-1]) < self.batch_size:
                batches.pop()

            dataset = PairTreeDataset(batches, self.vocab, self.y_assm)
            dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=self.num_workers, collate_fn=lambda x:x[0])

            for b in dataloader:
                yield b

            del data, batches, dataset, dataloader

class MolTreeFolder(object):

    def __init__(self, data_folder, vocab, batch_size, num_workers=4, shuffle=True, assm=True, replicate=None):
        self.data_folder = data_folder
        self.data_files = [fn for fn in os.listdir(data_folder)]
        self.batch_size = batch_size
        self.vocab = vocab
        self.num_workers = num_workers
        self.shuffle = shuffle
        self.assm = assm

        if replicate is not None: #expand is int
            self.data_files = self.data_files * replicate

    def __iter__(self):
        for fn in self.data_files:
            fn = os.path.join(self.data_folder, fn)
            with open(fn, 'rb') as f:
                data = pickle.load(f)

            if self.shuffle: 
                random.shuffle(data) #shuffle data before batch

            batches = [data[i : i + self.batch_size] for i in range(0, len(data), self.batch_size)]
            if len(batches[-1]) < self.batch_size:
                batches.pop()

            dataset = MolTreeDataset(batches, self.vocab, self.assm)
            dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=self.num_workers, collate_fn=lambda x:x[0])

            for b in dataloader:
                yield b

            del data, batches, dataset, dataloader

class PairTreeDataset(Dataset):

    def __init__(self, data, vocab, y_assm):
        self.data = data
        self.vocab = vocab
        self.y_assm = y_assm

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        batch0, batch1 = zip(*self.data[idx])
        return tensorize(batch0, self.vocab, assm=False), tensorize(batch1, self.vocab, assm=self.y_assm)

class MolTreeDataset(Dataset):

    def __init__(self, data, vocab, assm=True):
        self.data = data
        self.vocab = vocab
        self.assm = assm

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return tensorize(self.data[idx], self.vocab, assm=self.assm)

def tensorize(tree_batch, vocab, assm=True):
    set_batch_nodeID(tree_batch, vocab)
    smiles_batch = [tree.smiles for tree in tree_batch]
    jtenc_holder,mess_dict = JTNNEncoder.tensorize(tree_batch)
    jtenc_holder = jtenc_holder
    mpn_holder = MPN.tensorize(smiles_batch)

    if assm is False:
        return tree_batch, jtenc_holder, mpn_holder

    cands = []
    batch_idx = []
    for i,mol_tree in enumerate(tree_batch):
        for node in mol_tree.nodes:
            #Leaf node's attachment is determined by neighboring node's attachment
            if node.is_leaf or len(node.cands) == 1: continue
            cands.extend( [(cand, mol_tree.nodes, node) for cand in node.cands] )
            batch_idx.extend([i] * len(node.cands))

    jtmpn_holder = JTMPN.tensorize(cands, mess_dict)
    batch_idx = torch.LongTensor(batch_idx)

    return tree_batch, jtenc_holder, mpn_holder, (jtmpn_holder,batch_idx)

def set_batch_nodeID(mol_batch, vocab):
    tot = 0
    for mol_tree in mol_batch:
        for node in mol_tree.nodes:
            node.idx = tot
            node.wid = vocab.get_index(node.smiles)
            tot += 1
            
class PropMolTreeDataset(Dataset):

    def __init__(self, data, vocab, assm=True):
        self.data = data
        self.vocab = vocab
        self.assm = assm

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return tensorize_prop(self.data[idx],self.vocab, assm=self.assm)

class PropMolTreeFolder(object):

    def __init__(self, data_folder, vocab, batch_size, num_workers=4, shuffle=True, assm=True, replicate=None):
        self.data_folder = data_folder
        self.data_files = [fn for fn in os.listdir(data_folder)]
        self.batch_size = batch_size
        self.vocab = vocab
        self.num_workers = num_workers
        self.shuffle = shuffle
        self.assm = assm

        if replicate is not None: #expand is int
            self.data_files = self.data_files * replicate

    def __iter__(self):
        for fn in self.data_files:
            fn = os.path.join(self.data_folder, fn)
            with open(fn, 'rb') as f:
                data = pickle.load(f)
                
            # print(data[0:5])

            if self.shuffle: 
                random.shuffle(data) #shuffle data before batch

            batches = [data[i : i + self.batch_size] for i in range(0, len(data), self.batch_size)]
            if len(batches[-1]) < self.batch_size:
                batches.pop()

            dataset = PropMolTreeDataset(batches, self.vocab, self.assm)
            dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=self.num_workers, collate_fn=lambda x:x[0])

            for b in dataloader:
                yield b

            del data, batches, dataset, dataloader
            
def tensorize_prop(data, vocab, assm=True):
    tree_batch,prop = list(zip(*data))
    set_batch_nodeID(tree_batch, vocab)
    smiles_batch = [tree.smiles for tree in tree_batch]
    jtenc_holder,mess_dict = JTNNEncoder.tensorize(tree_batch)
    jtenc_holder = jtenc_holder
    mpn_holder = MPN.tensorize(smiles_batch)

    if assm is False:
        return tree_batch, jtenc_holder, mpn_holder

    cands = []
    batch_idx = []
    for i,mol_tree in enumerate(tree_batch):
        for node in mol_tree.nodes:
            #Leaf node's attachment is determined by neighboring node's attachment
            if node.is_leaf or len(node.cands) == 1: continue
            cands.extend( [(cand, mol_tree.nodes, node) for cand in node.cands] )
            batch_idx.extend([i] * len(node.cands))

    jtmpn_holder = JTMPN.tensorize(cands, mess_dict)
    batch_idx = torch.LongTensor(batch_idx)

    return tree_batch, jtenc_holder, mpn_holder, (jtmpn_holder,batch_idx), prop