import os from crewai import Agent, Crew, Process, Task from crewai.tools import tool from crewai_tools import ( CodeInterpreterTool, SerperDevTool, VisionTool, WebsiteSearchTool, YoutubeVideoSearchTool ) from openinference.instrumentation.crewai import CrewAIInstrumentor from phoenix.otel import register from util import get_final_answer MANAGER_MODEL = "gpt-4.1" AGENT_MODEL = "gpt-4.1" PHOENIX_API_KEY = os.environ["PHOENIX_API_KEY"] os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}" os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com" tracer_provider = register( auto_instrument=True, project_name="gaia" ) CrewAIInstrumentor().instrument(tracer_provider=tracer_provider) def run_crew(question, file_name): # Tools image_analysis_tool = VisionTool() python_coding_tool = CodeInterpreterTool() web_search_tool = SerperDevTool() web_rag_tool = WebsiteSearchTool() youtube_analysis_tool = YoutubeVideoSearchTool() # Agents image_analysis_agent = Agent( role="Image Analysis Agent", goal="Analyze image to help answer question \"{topic}\"", backstory="As an expert image analysis assistant, you analyze the image to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=3, tools=[image_analysis_tool], verbose=False ) python_coding_agent = Agent( role="Python Coding Agent", goal="Write and/or execute Python code to help answer question \"{topic}\"", backstory="As an expert Python coding assistant, you write and/or execute Python code to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=5, tools=[python_coding_tool], verbose=False ) web_search_agent = Agent( role="Web Search Agent", goal="Search the web to help answer question \"{topic}\", then scrape the most relevant web page.", backstory="As an expert web search assistant, you search the web to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=3, tools=[web_search_tool, web_rag_tool], verbose=False ) youtube_analysis_agent = Agent( role="YouTube Analysis Agent", goal="Analyze YouTube video to help answer question \"{topic}\"", backstory="As an expert YouTube video analysis assistant, you analyze the video to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=3, tools=[youtube_analysis_tool], verbose=False ) manager_agent = Agent( role="Manager Agent", goal="Try to answer the following question. If needed, delegate to **one** of your coworkers, Image Analysis Agent, Python Coding Agent, Web Search Agent, or YouTube Analysis Agent for help. " "If there is no good coworker, delegate to the Python Coding Agent to implement a tool for the task. " "Question: \"{topic}\"", backstory="As an expert manager assistant, you answer the question.", allow_delegation=True, llm=MANAGER_MODEL, max_iter=5, verbose=True ) # Tasks manager_task = Task( agent=manager_agent, description="Try to answer the following question. If needed, delegate to **one** of your coworkers, Image Analysis Agent, Python Coding Agent, Web Search Agent, or YouTube Analysis Agent for help. Question: \"{topic}\"", expected_output="The answer to the question." ) # Crew crew = Crew( agents=[image_analysis_agent, python_coding_agent, web_search_agent, youtube_analysis_agent], manager_agent=manager_agent, tasks=[manager_task], verbose=True ) # Processing if file_name: question = f"{question} File name: data/{file_name}." if file_name.endswith(".py") or file_name.endswith(".xlsx"): with open(f"data/{file_name}", "r") as file: question = f"{question} File data:\n{file.read()}" print(f"Question: {question}") initial_answer = crew.kickoff(inputs={"topic": question}) print(f"Initial answer: {initial_answer}") final_answer = get_final_answer(question, str(initial_answer)) print(f"Final answer: {final_answer}") return final_answer