# References: # https://docs.crewai.com/introduction # https://ai.google.dev/gemini-api/docs import os import pandas as pd from crewai import Agent, Crew, Process, Task from crewai.tools import tool from google import genai from google.genai import types from openinference.instrumentation.crewai import CrewAIInstrumentor from phoenix.otel import register from util import read_file, get_final_answer ## LLMs MANAGER_MODEL = "gpt-4.1-mini" AGENT_MODEL = "gpt-4.1-mini" FINAL_ANSWER_MODEL = "gemini-2.5-flash-preview-04-17" WEB_SEARCH_MODEL = "gemini-2.5-flash-preview-04-17" IMAGE_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" AUDIO_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" VIDEO_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" YOUTUBE_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" CODE_GENERATION_MODEL = "gemini-2.5-flash-preview-04-17" CODE_EXECUTION_MODEL = "gemini-2.5-flash-preview-04-17" # LLM evaluation PHOENIX_API_KEY = os.environ["PHOENIX_API_KEY"] os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}" os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com" tracer_provider = register( auto_instrument=True, project_name="gaia" ) CrewAIInstrumentor().instrument(tracer_provider=tracer_provider) def run_crew(question, file_path): # Tools @tool("Web Search Tool") def web_search_tool(question: str) -> str: """Search the web to answer a question. Args: question (str): Question to answer Returns: str: Answer to the question Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) response = client.models.generate_content( model=WEB_SEARCH_MODEL, contents=question, config=types.GenerateContentConfig( tools=[types.Tool(google_search=types.GoogleSearchRetrieval())] ) ) return response.text except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("Image Analysis Tool") def image_analysis_tool(question: str, file_path: str) -> str: """Answer a question about an image file. Args: question (str): Question about an image file file_path (str): The image file path Returns: str: Answer to the question about the image file Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) file = client.files.upload(file=file_path) response = client.models.generate_content( model=IMAGE_ANALYSIS_MODEL, contents=[file, question] ) return response.text except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("Audio Analysis Tool") def audio_analysis_tool(question: str, file_path: str) -> str: """Answer a question about an audio file. Args: question (str): Question about an audio file file_path (str): The audio file path Returns: str: Answer to the question about the audio file Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) file = client.files.upload(file=file_path) response = client.models.generate_content( model=AUDIO_ANALYSIS_MODEL, contents=[file, question] ) return response.text except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("Video Analysis Tool") def video_analysis_tool(question: str, file_path: str) -> str: """Answer a question about a video file. Args: question (str): Question about a video file file_path (str): The video file path Returns: str: Answer to the question about the video file Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) file = client.files.upload(file=file_path) response = client.models.generate_content( model=VIDEO_ANALYSIS_MODEL, contents=[file, question] ) return response.text except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("YouTube Analysis Tool") def youtube_analysis_tool(question: str, url: str) -> str: """Answer a question about a YouTube video. Args: question (str): Question about a YouTube video url (str): The YouTube video URL Returns: str: Answer to the question about the YouTube video Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) return client.models.generate_content( model=YOUTUBE_ANALYSIS_MODEL, contents=types.Content( parts=[types.Part(file_data=types.FileData(file_uri=url)), types.Part(text=question)] ) ) except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("Code Generation Tool") def code_generation_tool(question: str, file_path: str) -> str: """Given a question and optional .csv, .xls, .xlsx, .json, .jsonl document file, generate code to answer the question. Args: question (str): Question to answer file_path (str): The optional .csv, .xls, .xlsx, .json, .jsonl document file path Returns: str: Answer to the question Raises: RuntimeError: If processing fails""" try: if file_path: df = read_file(file_path) question = question.split(" File path:")[0] question = f"File data:\n{df.to_string()}\nQuestion: {question}" print("###") print(question) print("###") client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) response = client.models.generate_content( model=CODE_GENERATION_MODEL, contents=[question], config=types.GenerateContentConfig( tools=[types.Tool(code_execution=types.ToolCodeExecution)] ), ) for part in response.candidates[0].content.parts: if part.code_execution_result is not None: return part.code_execution_result.output except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") @tool("Code Execution Tool") def code_execution_tool(question: str, file_path: str) -> str: """Given a question and .py Python file, execute the file to answer the question. Args: question (str): Question to answer file_path (str): The .py Python file path Returns: str: Answer to the question Raises: RuntimeError: If processing fails""" try: client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) file = client.files.upload(file=file_path) response = client.models.generate_content( model=CODE_EXECUTION_MODEL, contents=[file, question], config=types.GenerateContentConfig( tools=[types.Tool(code_execution=types.ToolCodeExecution)] ), ) for part in response.candidates[0].content.parts: if part.code_execution_result is not None: return part.code_execution_result.output except Exception as e: raise RuntimeError(f"Processing failed: {str(e)}") # Agents web_search_agent = Agent( role="Web Search Agent", goal="Search the web to help answer question \"{question}\"", backstory="As an expert web search assistant, you search the web to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[web_search_tool], verbose=False ) image_analysis_agent = Agent( role="Image Analysis Agent", goal="Analyze image file to help answer question \"{question}\"", backstory="As an expert image analysis assistant, you analyze the image file to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[image_analysis_tool], verbose=False ) audio_analysis_agent = Agent( role="Audio Analysis Agent", goal="Analyze audio file to help answer question \"{question}\"", backstory="As an expert audio analysis assistant, you analyze the audio file to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[audio_analysis_tool], verbose=False ) video_analysis_agent = Agent( role="Video Analysis Agent", goal="Analyze video file to help answer question \"{question}\"", backstory="As an expert video analysis assistant, you analyze the video file to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[video_analysis_tool], verbose=False ) youtube_analysis_agent = Agent( role="YouTube Analysis Agent", goal="Analyze YouTube video to help answer question \"{question}\"", backstory="As an expert YouTube analysis assistant, you analyze the video to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[youtube_analysis_tool], verbose=False ) code_generation_agent = Agent( role="Code Generation Agent", goal="Given a question and optional .csv, .xls, .xlsx, .json, .jsonl document file, generate code to help answer the question: \"{question}\"", backstory="As an expert Python code generation assistant, you generate code to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[code_generation_tool], verbose=False ) code_execution_agent = Agent( role="Code Execution Agent", goal="Given a question and .py Python file, execute the file to help answer the question: \"{question}\"", backstory="As an expert Python code execution assistant, you execute the code file to help answer the question.", allow_delegation=False, llm=AGENT_MODEL, max_iter=2, tools=[code_execution_tool], verbose=False ) manager_agent = Agent( role="Manager Agent", goal="Try to answer the following question. If needed, delegate to one or more of your coworkers for help. " "If there is no good coworker, delegate to the Python Coding Agent to implement a tool for the task. " "Question: \"{question}\"", backstory="As an expert manager assistant, you answer the question.", allow_delegation=True, llm=MANAGER_MODEL, max_iter=5, verbose=True ) # Task manager_task = Task( agent=manager_agent, description="Try to answer the following question. If needed, delegate to one or more of your coworkers for help. Question: \"{question}\"", expected_output="The answer to the question." ) # Crew crew = Crew( agents=[web_search_agent, image_analysis_agent, audio_analysis_agent, video_analysis_agent, youtube_analysis_agent, code_generation_agent, code_execution_agent], manager_agent=manager_agent, tasks=[manager_task], verbose=True ) # Process if file_path: question = f"{question} File path: {file_path}." initial_answer = crew.kickoff(inputs={"question": question}) final_answer = get_final_answer(FINAL_ANSWER_MODEL, question, str(initial_answer)) print(f"Question: {question}") print(f"Initial answer: {initial_answer}") print(f"Final answer: {final_answer}") return final_answer