|
import os |
|
from crewai import Agent, Crew, Process, Task |
|
from crewai.tools import tool |
|
|
|
|
|
|
|
|
|
from google import genai |
|
from google.genai import types |
|
from openinference.instrumentation.crewai import CrewAIInstrumentor |
|
from phoenix.otel import register |
|
from util import get_final_answer |
|
|
|
|
|
|
|
MANAGER_MODEL = "gpt-4.1-mini" |
|
AGENT_MODEL = "gpt-4.1-mini" |
|
|
|
FINAL_ANSWER_MODEL = "gemini-2.5-flash-preview-04-17" |
|
|
|
WEB_SEARCH_MODEL = "gemini-2.5-flash-preview-04-17" |
|
IMAGE_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" |
|
AUDIO_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" |
|
VIDEO_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" |
|
YOUTUBE_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" |
|
DOCUMENT_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17" |
|
CODE_GENERATION_MODEL = "gemini-2.5-flash-preview-04-17" |
|
CODE_EXECUTION_MODEL = "gemini-2.5-flash-preview-04-17" |
|
|
|
|
|
|
|
PHOENIX_API_KEY = os.environ["PHOENIX_API_KEY"] |
|
|
|
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}" |
|
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com" |
|
|
|
tracer_provider = register( |
|
auto_instrument=True, |
|
project_name="gaia" |
|
) |
|
|
|
CrewAIInstrumentor().instrument(tracer_provider=tracer_provider) |
|
|
|
def run_crew(question, file_path): |
|
|
|
|
|
|
|
|
|
|
|
@tool("Web Search Tool") |
|
def web_search_tool(question: str) -> str: |
|
"""Search the web to answer a question. |
|
|
|
Args: |
|
question (str): Question to answer |
|
|
|
Returns: |
|
str: Answer to the question |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
response = client.models.generate_content( |
|
model=WEB_SEARCH_MODEL, |
|
contents=question, |
|
config=types.GenerateContentConfig( |
|
tools=[types.Tool(google_search=types.GoogleSearchRetrieval())] |
|
) |
|
) |
|
|
|
return response.text |
|
|
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Image Analysis Tool") |
|
def image_analysis_tool(question: str, file_path: str) -> str: |
|
"""Answer a question about an image file. |
|
|
|
Args: |
|
question (str): Question about an image file |
|
file_path (str): The image file path |
|
|
|
Returns: |
|
str: Answer to the question about the image file |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=IMAGE_ANALYSIS_MODEL, |
|
contents=[file, question] |
|
) |
|
|
|
return response.text |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Audio Analysis Tool") |
|
def audio_analysis_tool(question: str, file_path: str) -> str: |
|
"""Answer a question about an audio file. |
|
|
|
Args: |
|
question (str): Question about an audio file |
|
file_path (str): The audio file path |
|
|
|
Returns: |
|
str: Answer to the question about the audio file |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=AUDIO_ANALYSIS_MODEL, |
|
contents=[file, question] |
|
) |
|
|
|
return response.text |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Video Analysis Tool") |
|
def video_analysis_tool(question: str, file_path: str) -> str: |
|
"""Answer a question about a video file. |
|
|
|
Args: |
|
question (str): Question about a video file |
|
file_path (str): The video file path |
|
|
|
Returns: |
|
str: Answer to the question about the video file |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=VIDEO_ANALYSIS_MODEL, |
|
contents=[file, question] |
|
) |
|
|
|
return response.text |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("YouTube Analysis Tool") |
|
def youtube_analysis_tool(question: str, url: str) -> str: |
|
"""Answer a question about a YouTube video. |
|
|
|
Args: |
|
question (str): Question about a YouTube video |
|
url (str): The YouTube video URL |
|
|
|
Returns: |
|
str: Answer to the question about the YouTube video |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
return client.models.generate_content( |
|
model=YOUTUBE_ANALYSIS_MODEL, |
|
contents=types.Content( |
|
parts=[types.Part(file_data=types.FileData(file_uri=url)), |
|
types.Part(text=question)] |
|
) |
|
) |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Document Analysis Tool") |
|
def document_analysis_tool(question: str, file_path: str) -> str: |
|
"""Answer a question about a document file. Supported document types include: |
|
.txt, .csv, .xml, .rtf, .pdf, .md, .html, .css, .js |
|
|
|
Args: |
|
question (str): Question about a document file |
|
file_path (str): The document file path |
|
|
|
Returns: |
|
str: Answer to the question about the document file |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=DOCUMENT_ANALYSIS_MODEL, |
|
contents=[file, question] |
|
) |
|
|
|
return response.text |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Code Generation Tool") |
|
def code_generation_tool(question: str) -> str: |
|
"""Generate and execute Python code to answer a question. |
|
|
|
Args: |
|
question (str): Question to answer |
|
|
|
Returns: |
|
str: Answer to the question |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=CODE_GENERATION_MODEL, |
|
contents=[question], |
|
config=types.GenerateContentConfig( |
|
tools=[types.Tool(code_execution=types.ToolCodeExecution)] |
|
), |
|
) |
|
|
|
for part in response.candidates[0].content.parts: |
|
if part.code_execution_result is not None: |
|
return part.code_execution_result.output |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
@tool("Code Execution Tool") |
|
def code_execution_tool(question: str, file_path: str) -> str: |
|
"""Execute a Python code file to answer a question. |
|
|
|
Args: |
|
question (str): Question to answer |
|
file_path (str): The Python code file path |
|
|
|
Returns: |
|
str: Answer to the question |
|
|
|
Raises: |
|
RuntimeError: If processing fails""" |
|
try: |
|
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"]) |
|
|
|
file = client.files.upload(file=file_path) |
|
|
|
response = client.models.generate_content( |
|
model=CODE_EXECUTION_MODEL, |
|
contents=[file, question], |
|
config=types.GenerateContentConfig( |
|
tools=[types.Tool(code_execution=types.ToolCodeExecution)] |
|
), |
|
) |
|
|
|
for part in response.candidates[0].content.parts: |
|
if part.code_execution_result is not None: |
|
return part.code_execution_result.output |
|
except Exception as e: |
|
raise RuntimeError(f"Processing failed: {str(e)}") |
|
|
|
|
|
|
|
web_search_agent = Agent( |
|
role="Web Search Agent", |
|
goal="Search the web to help answer question \"{question}\"", |
|
backstory="As an expert web search assistant, you search the web to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[web_search_tool], |
|
verbose=False |
|
) |
|
|
|
image_analysis_agent = Agent( |
|
role="Image Analysis Agent", |
|
goal="Analyze image file to help answer question \"{question}\"", |
|
backstory="As an expert image analysis assistant, you analyze the image file to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[image_analysis_tool], |
|
verbose=False |
|
) |
|
|
|
audio_analysis_agent = Agent( |
|
role="Audio Analysis Agent", |
|
goal="Analyze audio file to help answer question \"{question}\"", |
|
backstory="As an expert audio analysis assistant, you analyze the audio file to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[audio_analysis_tool], |
|
verbose=False |
|
) |
|
|
|
video_analysis_agent = Agent( |
|
role="Video Analysis Agent", |
|
goal="Analyze video file to help answer question \"{question}\"", |
|
backstory="As an expert video analysis assistant, you analyze the video file to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[video_analysis_tool], |
|
verbose=False |
|
) |
|
|
|
youtube_analysis_agent = Agent( |
|
role="YouTube Analysis Agent", |
|
goal="Analyze YouTube video to help answer question \"{question}\"", |
|
backstory="As an expert YouTube analysis assistant, you analyze the video to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[youtube_analysis_tool], |
|
verbose=False |
|
) |
|
|
|
document_analysis_agent = Agent( |
|
role="Document Analysis Agent", |
|
goal="Analyze document of type .txt, .csv, .xml, .rtf, .pdf, .md, .html, .css, .js to help answer question \"{question}\"", |
|
backstory="As an expert document analysis assistant, you analyze the document to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=2, |
|
tools=[document_analysis_tool], |
|
verbose=False |
|
) |
|
|
|
code_generation_agent = Agent( |
|
role="Code Generation Agent", |
|
goal="Generate Python code and execute it to help answer question \"{question}\"", |
|
backstory="As an expert Python code generation assistant, you generate and execute code to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=3, |
|
tools=[code_execution_tool], |
|
verbose=False |
|
) |
|
|
|
code_execution_agent = Agent( |
|
role="Code Execution Agent", |
|
goal="Execute Python code file to help answer question \"{question}\"", |
|
backstory="As an expert Python code execution assistant, you execute the code file to help answer the question.", |
|
allow_delegation=False, |
|
llm=AGENT_MODEL, |
|
max_iter=3, |
|
tools=[code_execution_tool], |
|
verbose=False |
|
) |
|
|
|
manager_agent = Agent( |
|
role="Manager Agent", |
|
goal="Try to answer the following question. If needed, delegate to one or more of your coworkers for help. " |
|
"If there is no good coworker, delegate to the Python Coding Agent to implement a tool for the task. " |
|
"Question: \"{question}\"", |
|
backstory="As an expert manager assistant, you answer the question.", |
|
allow_delegation=True, |
|
llm=MANAGER_MODEL, |
|
max_iter=5, |
|
verbose=True |
|
) |
|
|
|
|
|
|
|
manager_task = Task( |
|
agent=manager_agent, |
|
description="Try to answer the following question. If needed, delegate to one or more of your coworkers for help. Question: \"{question}\"", |
|
expected_output="The answer to the question." |
|
) |
|
|
|
|
|
|
|
crew = Crew( |
|
agents=[web_search_agent, |
|
image_analysis_agent, |
|
audio_analysis_agent, |
|
video_analysis_agent, |
|
youtube_analysis_agent, |
|
document_analysis_agent, |
|
code_generation_agent, |
|
code_execution_agent], |
|
manager_agent=manager_agent, |
|
tasks=[manager_task], |
|
verbose=True |
|
) |
|
|
|
|
|
|
|
if file_path: |
|
question = f"{question} File path: {file_path}." |
|
|
|
|
|
|
|
|
|
|
|
initial_answer = crew.kickoff(inputs={"question": question}) |
|
final_answer = get_final_answer(FINAL_ANSWER_MODEL, question, str(initial_answer)) |
|
|
|
print(f"Question: {question}") |
|
print(f"Initial answer: {initial_answer}") |
|
print(f"Final answer: {final_answer}") |
|
|
|
return final_answer |