File size: 20,334 Bytes
ec1b07b
639d21f
ec1b07b
 
 
e790df8
1081c8c
00aced7
adf9d94
2f4d8f8
63550ea
f06be5d
230d96d
e109401
b6b45a1
2c6f8d9
 
ce7387d
2577b44
3d3e0e3
cdc9e59
d50da91
cdc9e59
ff22768
b0cfa9f
dfa6823
 
 
cf72801
db661a9
fb9e704
 
4c6d89e
27f2401
86f2a58
230d96d
df58f18
230d96d
 
3bd69bd
5028b6b
 
 
 
7ddb52b
67a608a
7bc23ab
948a6f4
a09b432
ed46760
dfa6823
 
b5bf432
dfa6823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff22768
dfa6823
 
 
 
 
 
f605354
14796a1
faf3b0b
14796a1
 
 
 
 
 
 
 
 
 
 
 
e790df8
14796a1
e790df8
 
 
 
 
14796a1
e790df8
 
14796a1
 
384ab5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a09b432
 
 
f535abe
845c4a7
 
a09b432
 
845c4a7
 
a09b432
845c4a7
 
 
617431a
8fb5f82
cafe2aa
a09b432
617431a
a09b432
dfa6823
a09b432
845c4a7
148f2b3
a09b432
 
 
0666451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234b682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae49eed
eae9e2e
 
0666451
7c9673d
 
 
5612bdb
7c9673d
 
 
ae49eed
 
eae9e2e
369cd81
234b682
 
4e47816
234b682
 
 
 
 
a09b432
db661a9
 
5ca4d72
e109401
 
 
3a6d97b
 
e109401
 
3a6d97b
e109401
 
 
 
 
 
 
db661a9
e109401
 
 
 
 
 
 
 
 
04f335f
5997978
 
 
 
04f335f
 
5997978
 
04f335f
 
5997978
04f335f
 
 
 
5997978
 
 
04f335f
5997978
 
04f335f
 
 
 
 
 
 
 
 
 
5997978
 
 
 
 
315329c
3923707
5997978
 
315329c
3923707
5997978
315329c
 
 
 
5997978
315329c
5997978
 
315329c
 
 
 
 
 
 
 
 
 
5997978
7da0809
eea8c7f
617431a
 
b5bf432
f535abe
8439f94
 
4175faa
dfa6823
2577b44
8439f94
617431a
9e82ac9
 
f535abe
 
eea8c7f
2d85129
4175faa
faf3b0b
2577b44
eea8c7f
8439f94
9e82ac9
 
f535abe
 
6bf14de
3981c3e
4175faa
9e82ac9
2577b44
1c7a0a7
7f78cfc
9e82ac9
 
f535abe
 
35828ac
3981c3e
4175faa
9e82ac9
2577b44
35828ac
9e82ac9
a09b432
 
b5bf432
f535abe
148f2b3
 
4175faa
9e82ac9
2577b44
9e82ac9
 
234b682
 
3d15a10
234b682
 
 
 
 
 
 
e109401
db661a9
 
5ca4d72
db661a9
e109401
 
 
4d7d013
e109401
 
5997978
f605354
 
f535abe
 
617431a
 
51689e7
f605354
2577b44
617431a
 
5997978
 
 
 
 
 
 
 
 
 
 
a412583
b40cc33
f535abe
ea40888
4453360
bec1a98
f605354
2577b44
4453360
 
ed46760
 
b05f917
a412583
13950d2
 
 
 
 
5997978
35b7834
5ca4d72
 
5fa0d18
5997978
590afd3
b5bf432
ea40888
b05f917
4453360
7da0809
35828ac
0b498b7
617431a
b95f33c
a09b432
 
 
234b682
5997978
 
 
a412583
f155629
faf3b0b
ab1c2b7
 
ed46760
 
5fa0d18
 
04f335f
b29af12
5fa0d18
b7de1a2
9d7947a
b7de1a2
5fa0d18
b7de1a2
 
750bbf8
5fa0d18
 
b7de1a2
9e680bf
1312508
c0e1900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# References:

# https://docs.crewai.com/introduction
# https://ai.google.dev/gemini-api/docs

import os
import pandas as pd
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from google import genai
from google.genai import types
from openinference.instrumentation.crewai import CrewAIInstrumentor
from phoenix.otel import register
from tools import add, subtract, multiply, divide, modulus
from utils import read_file_json, read_docx_text, read_pptx_text, is_ext

## LLMs

MANAGER_MODEL           = "gpt-4.5-preview"
AGENT_MODEL             = "gpt-4.1-mini"

FINAL_ANSWER_MODEL      = "gemini-2.5-pro-preview-03-25"

WEB_SEARCH_MODEL        = "gemini-2.5-flash-preview-04-17"
IMAGE_ANALYSIS_MODEL    = "gemini-2.5-flash-preview-04-17"
AUDIO_ANALYSIS_MODEL    = "gemini-2.5-flash-preview-04-17"
VIDEO_ANALYSIS_MODEL    = "gemini-2.5-flash-preview-04-17"
YOUTUBE_ANALYSIS_MODEL  = "gemini-2.5-flash-preview-04-17"
DOCUMENT_ANALYSIS_MODEL = "gemini-2.5-flash-preview-04-17"
ARITHMETIC_MODEL        = "gemini-2.5-flash-preview-04-17"
CODE_GENERATION_MODEL   = "gemini-2.5-flash-preview-04-17"
CODE_EXECUTION_MODEL    = "gemini-2.5-flash-preview-04-17"

# LLM evaluation

PHOENIX_API_KEY = os.environ["PHOENIX_API_KEY"]

os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"

tracer_provider = register(
    auto_instrument=True,
    project_name="gaia"
)

#CrewAIInstrumentor().instrument(tracer_provider=tracer_provider)

def run_crew(question, file_path):
    # Tools

    @tool("Web Search Tool")
    def web_search_tool(question: str) -> str:
        """Given a question only, search the web to answer the question.
    
           Args:
               question (str): Question to answer
                
           Returns:
               str: Answer to the question
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
            
            response = client.models.generate_content(
                model=WEB_SEARCH_MODEL,
                contents=question,
                config=types.GenerateContentConfig(
                    tools=[types.Tool(google_search=types.GoogleSearchRetrieval())]
                )
            )

            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")
    
    @tool("Image Analysis Tool")
    def image_analysis_tool(question: str, file_path: str) -> str:
        """Given a question and image file, analyze the image to answer the question.
    
           Args:
               question (str): Question about an image file
               file_path (str): The image file path
                
           Returns:
               str: Answer to the question about the image file
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
            
            file = client.files.upload(file=file_path)

            response = client.models.generate_content(
                model=IMAGE_ANALYSIS_MODEL,
                contents=[file, question]
            )
          
            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Audio Analysis Tool")
    def audio_analysis_tool(question: str, file_path: str) -> str:
        """Given a question and audio file, analyze the audio to answer the question.
    
           Args:
               question (str): Question about an audio file
               file_path (str): The audio file path
                
           Returns:
               str: Answer to the question about the audio file
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

            file = client.files.upload(file=file_path)
            
            response = client.models.generate_content(
                model=AUDIO_ANALYSIS_MODEL, 
                contents=[file, question]
            )
          
            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Video Analysis Tool")
    def video_analysis_tool(question: str, file_path: str) -> str:
        """Given a question and video file, analyze the video to answer the question.
    
           Args:
               question (str): Question about a video file
               file_path (str): The video file path
                
           Returns:
               str: Answer to the question about the video file
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

            file = client.files.upload(file=file_path)
            
            response = client.models.generate_content(
                model=VIDEO_ANALYSIS_MODEL, 
                contents=[file, question]
            )

            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")
            
    @tool("YouTube Analysis Tool")
    def youtube_analysis_tool(question: str, url: str) -> str:
        """Given a question and YouTube URL, analyze the video to answer the question.
    
           Args:
               question (str): Question about a YouTube video
               url (str): The YouTube video URL
                
           Returns:
               str: Answer to the question about the YouTube video
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

            return client.models.generate_content(
                model=YOUTUBE_ANALYSIS_MODEL,
                contents=types.Content(
                    parts=[types.Part(file_data=types.FileData(file_uri=url)),
                           types.Part(text=question)]
                )
            )
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Document Analysis Tool")
    def document_analysis_tool(question: str, file_path: str) -> str:
        """Given a question and document file, analyze the document to answer the question.
    
           Args:
               question (str): Question about a document file
               file_path (str): The document file path
                
           Returns:
               str: Answer to the question about the document file
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

            contents = []
            
            if is_ext(file_path, ".docx"):
                text_data = read_docx_text(file_path)
                contents = [f"{question}\n{text_data}"]
                print(f"=> Text data:\n{text_data}")
            elif is_ext(file_path, ".pptx"):
                text_data = read_pptx_text(file_path)
                contents = [f"{question}\n{text_data}"]
                print(f"=> Text data:\n{text_data}")
            else:
                file = client.files.upload(file=file_path)
                contents = [file, question]
            
            response = client.models.generate_content(
                model=DOCUMENT_ANALYSIS_MODEL,
                contents=contents
            )
          
            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Arithmetic Tool")
    def arithmetic_tool(question: str, a: float, b: float) -> float:
        """Given a question and two numbers, perform the calculation to answer the question.
    
           Args:
               question (str): Question to answer
               a (float): First number
               b (float): Second number
                
           Returns:
               float: Result number
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
            
            response = client.models.generate_content(
                model=ARITHMETIC_MODEL,
                contents=question,
                config=types.GenerateContentConfig(
                    tools=[add, subtract, multiply, divide, modulus]
                )
            )

            return response.text
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Code Execution Tool")
    def code_execution_tool(question: str, file_path: str) -> str:
        """Given a question and Python file, execute the file to answer the question.
    
           Args:
               question (str): Question to answer
               file_path (str): The Python file path
                
           Returns:
               str: Answer to the question
                
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

            file = client.files.upload(file=file_path)

            response = client.models.generate_content(
                model=CODE_EXECUTION_MODEL,
                contents=[file, question],
                config=types.GenerateContentConfig(
                    tools=[types.Tool(code_execution=types.ToolCodeExecution)]
                ),
            )
            
            for part in response.candidates[0].content.parts:
                if part.code_execution_result is not None:
                    return part.code_execution_result.output
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")

    @tool("Code Generation Tool")
    def code_generation_tool(question: str, json_data: str) -> str:
        """Given a question and JSON data, generate and execute code to answer the question.

           Args:
               question (str): Question to answer
                file_path (str): The JSON data

           Returns:
               str: Answer to the question
               
           Raises:
               RuntimeError: If processing fails"""
        try:
            client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
                    
            response = client.models.generate_content(
                model=CODE_GENERATION_MODEL,
                contents=[f"{question}\n{json_data}"],
                config=types.GenerateContentConfig(
                    tools=[types.Tool(code_execution=types.ToolCodeExecution)]
                ),
            )
            
            for part in response.candidates[0].content.parts:
                if part.code_execution_result is not None:
                    return part.code_execution_result.output
        except Exception as e:
            raise RuntimeError(f"Processing failed: {str(e)}")
                        
    # Agents

    web_search_agent = Agent(
        role="Web Search Agent",
        goal="Given a question only, search the web and answer the question: {question}",
        backstory="As an expert web search assistant, you search the web to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[web_search_tool],
        verbose=True
    )

    image_analysis_agent = Agent(
        role="Image Analysis Agent",
        goal="Given a question and image file, analyze the image and answer the question: {question}",
        backstory="As an expert image analysis assistant, you analyze the image to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[image_analysis_tool],
        verbose=True
    )

    audio_analysis_agent = Agent(
        role="Audio Analysis Agent",
        goal="Given a question and audio file, analyze the audio and answer the question: {question}",
        backstory="As an expert audio analysis assistant, you analyze the audio to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[audio_analysis_tool],
        verbose=True
    )

    video_analysis_agent = Agent(
        role="Video Analysis Agent",
        goal="Given a question and video file, analyze the video and answer the question: {question}",
        backstory="As an expert video analysis assistant, you analyze the video file to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[video_analysis_tool],
        verbose=True
    )
    
    youtube_analysis_agent = Agent(
        role="YouTube Analysis Agent",
        goal="Given a question and YouTube URL, analyze the video and answer the question: {question}",
        backstory="As an expert YouTube analysis assistant, you analyze the video to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[youtube_analysis_tool],
        verbose=True
    )

    document_analysis_agent = Agent(
        role="Document Analysis Agent",
        goal="Given a question and document file, analyze the document and answer the question: {question}",
        backstory="As an expert document analysis assistant, you analyze the document to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[document_analysis_tool],
        verbose=True
    )

    arithmetic_agent = Agent(
        role="Arithmetic Agent",
        goal="Given a question and two numbers, perform the calculation and answer the question: {question}",
        backstory="As an expert arithmetic assistant, you perform the calculation to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=2,
        tools=[arithmetic_tool],
        verbose=True
    )
        
    code_execution_agent = Agent(
        role="Code Execution Agent",
        goal="Given a question and Python file, execute the file to answer the question: {question}",
        backstory="As an expert Python code execution assistant, you execute code to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=3,
        tools=[code_execution_tool],
        verbose=True
    )

    code_generation_agent = Agent(
        role="Code Generation Agent",
        goal="Given a question and JSON data, generate and execute code to answer the question: {question}",
        backstory="As an expert Python code generation assistant, you generate and execute code to answer the question.",
        allow_delegation=False,
        llm=AGENT_MODEL,
        max_iter=3,
        tools=[code_generation_tool],
        verbose=True
    )

    manager_agent = Agent(
        role="Manager Agent",
        goal="Answer the following question. If needed, delegate to one of your coworkers. Question: {question}",
        backstory="As an expert manager assistant, you answer the question.",
        allow_delegation=True,
        llm=MANAGER_MODEL,
        max_iter=5,
        verbose=True
    )

    # Task

    manager_task = Task(
        agent=manager_agent,
        description="Answer the following question. If needed, delegate to one of your coworkers:\n"
                    "- Web Search Agent requires a question only.\n"
                    "- Image Analysis Agent requires a question and **.png, .jpeg, .webp, .heic, or .heif image file**.\n"
                    "- Audio Analysis Agent requires a question and **.wav, .mp3, .aiff, .aac, .ogg, or .flac audio file**.\n"
                    "- Video Analysis Agent requires a question and **.mp4, .mpeg, .mov, .avi, .x-flv, .mpg, .webm, .wmv, or .3gpp video file**.\n"
                    "- YouTube Analysis Agent requires a question and **YouTube URL**.\n"
                    "- Document Analysis Agent requires a question and **.docx, .pptx, .pdf, .txt, .html, css, .js, .md, .xml, or .rtf document file**.\n"
                    "- Arithmetic Agent requires a question and **two numbers to add, subtract, multiply, divide, or get the modulus**. "
                    "  In case there are more than two numbers, use the Code Generation Agent instead.\n"
                    "- Code Execution Agent requires a question and **Python file**.\n"
                    "- Code Generation Agent requires a question and **JSON data**.\n"
                    "In case you cannot answer the question and there is not a good coworker, delegate to the Code Generation Agent.\n"
                    "Question: {question}",
        expected_output="The answer to the question."
    )
    
    # Crew
    
    crew = Crew(
        agents=[web_search_agent, 
                image_analysis_agent, 
                audio_analysis_agent, 
                video_analysis_agent, 
                youtube_analysis_agent, 
                document_analysis_agent, 
                arithmetic_agent, 
                code_execution_agent, 
                code_generation_agent],
        manager_agent=manager_agent,
        tasks=[manager_task],
        verbose=True
    )

    # Process

    final_question = question
    
    if file_path:
        if is_ext(file_path, ".csv") or is_ext(file_path, ".xls") or is_ext(file_path, ".xlsx") or is_ext(file_path, ".json") or is_ext(file_path, ".jsonl"):
            json_data = read_file_json(file_path)
            final_question = f"{question} JSON data:\n{json_data}."
        else:
            final_question = f"{question} File path: {file_path}."
    
    answer = crew.kickoff(inputs={"question": final_question})
    final_answer = get_final_answer(FINAL_ANSWER_MODEL, question, str(answer))

    print(f"=> Initial question: {question}")
    print(f"=> Final question: {final_question}")
    print(f"=> Initial answer: {answer}")
    print(f"=> Final answer: {final_answer}")
    
    return final_answer

def get_final_answer(model, question, answer):
    prompt_template = """
        You are an expert question answering assistant. Given a question and an initial answer, your task is to provide the final answer.
        Your final answer must be a number and/or string OR as few words as possible OR a comma-separated list of numbers and/or strings.
        If you are asked for a number, don't use comma to write your number neither use units such as USD, $, percent, or % unless specified otherwise.
        If you are asked for a string, don't use articles, neither abbreviations (for example cities), and write the digits in plain text unless specified otherwise.
        If you are asked for a comma-separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
        If the final answer is a number, use a number not a word.
        If the final answer is a string, start with an uppercase character.
        If the final answer is a comma-separated list of numbers, use a space character after each comma.
        If the final answer is a comma-separated list of strings, use a space character after each comma and start with a lowercase character.
        Do not add any content to the final answer that is not in the initial answer.

        **Question:** """ + question + """
        
        **Initial answer:** """ + answer + """
        
        **Example 1:** What is the biggest city in California? Los Angeles
        **Example 2:** How many 'r's are in strawberry? 3
        **Example 3:** What is the opposite of black? White
        **Example 4:** What are the first 5 numbers in the Fibonacci sequence? 0, 1, 1, 2, 3
        **Example 5:** What is the opposite of bad, worse, worst? good, better, best
        
        **Final answer:** 

        """

    client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

    response = client.models.generate_content(
        model=model, 
        contents=[prompt_template]
    )
    
    return response.text