File size: 4,780 Bytes
7dae5d7
328500b
be96b46
a9baea4
b484368
dd64275
d546522
0281228
d546522
 
 
 
 
e35f671
d546522
 
 
 
 
7dae5d7
 
7dcc866
 
 
 
453dcab
 
b484368
e35f671
 
 
3ad86cf
7914072
3ad86cf
6aa678c
591c402
b484368
1326d25
f3ed293
 
7dcc866
453dcab
628c91c
3ad86cf
e47d1c9
f3ed293
 
 
7dcc866
453dcab
628c91c
f3ed293
03bd826
b484368
50954b4
f7e408f
6b83805
421c697
50954b4
f7e408f
 
d6b79a6
8a64a1b
9743460
ac28ea9
6a48765
ac28ea9
d6b79a6
8a64a1b
a5b24c7
 
bb14707
ac28ea9
a5b24c7
 
 
 
ac28ea9
a5b24c7
 
 
 
ac28ea9
a5b24c7
 
6449014
 
 
ac28ea9
cc3c980
ac28ea9
6449014
 
 
ac28ea9
 
6449014
e35f671
 
ac28ea9
cc3c980
ac28ea9
e35f671
6449014
574eab7
e35f671
574eab7
798f236
d6b79a6
c8ff2ad
 
8e9eaa5
b62f248
c8ff2ad
f7e408f
 
dd64275
e35f671
f7e408f
 
c71216f
 
0995edb
f7e408f
a4921f6
50a639b
e35f671
4c111c1
 
 
 
 
a4921f6
50a639b
e35f671
4c111c1
 
 
 
 
a4921f6
50a639b
e35f671
f7e408f
 
 
 
6b83805
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os, threading
import gradio as gr
from crew import run_crew
from utils import get_questions

def ask(question, openai_api_key, gemini_api_key, anthropic_api_key, file_name = ""):
    """
    Ask General AI Assistant a question to answer.

    Args:
        question (str): The question to answer
        openai_api_key (str): OpenAI API key
        gemini_api_key (str): Gemini API key
        anthropic_api_key (str): Anthropic API key
        file_name (str): Optional file name

    Returns:
        str: The answer to the question
    """
    if not question:
        raise gr.Error("Question is required.")

    if not openai_api_key:
        raise gr.Error("OpenAI API Key is required.")
    
    if not gemini_api_key:
        raise gr.Error("Gemini API Key is required.")

    if not anthropic_api_key:
        raise gr.Error("Anthropic API Key is required.")
        
    if file_name:
        file_name = f"data/{file_name}"
    
    lock = threading.Lock()

    with lock:
        answer = ""

        try:
            os.environ["OPENAI_API_KEY"] = openai_api_key
            os.environ["GEMINI_API_KEY"] = gemini_api_key
            os.environ["MODEL_API_KEY"] = anthropic_api_key
            
            answer = run_crew(question, file_name)
        except Exception as e:
            raise gr.Error(e)
        finally:
            del os.environ["OPENAI_API_KEY"]
            del os.environ["GEMINI_API_KEY"]
            del os.environ["MODEL_API_KEY"]
        
        return answer

gr.close_all()

with gr.Blocks() as grady:
    gr.Markdown("## Grady - General AI Assistant")
    gr.Markdown(os.environ.get("DESCRIPTION"))

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                question = gr.Textbox(
                    label="Question *",
                    placeholder="In the 2025 Gradio Agents & MCP Hackathon, what percentage of participants submitted a solution during the last 24 hours?",
                    interactive=True
                )
            with gr.Row():
                level = gr.Radio(
                    choices=[1, 2, 3],
                    label="GAIA Benchmark Level",
                    interactive=True,
                    scale=1
                )
                ground_truth = gr.Textbox(
                    label="Ground Truth",
                    interactive=True,
                    scale=1
                )
                file_name = gr.Textbox(
                    label="File Name",
                    interactive=True,
                    scale=2
                )
            with gr.Row():
                openai_api_key = gr.Textbox(
                    label="OpenAI API Key *",
                    type="password",
                    placeholder="sk‑...",
                    interactive=True
                )
                gemini_api_key = gr.Textbox(
                    label="Gemini API Key *",
                    type="password",
                    interactive=True
                )
                anthropic_api_key = gr.Textbox(
                    label="Anthropic API Key *",
                    type="password",
                    placeholder="sk-ant-...",
                    interactive=True
                )
            with gr.Row():
                clear_btn = gr.ClearButton(
                    components=[question, level, ground_truth, file_name]
                )
                submit_btn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            answer = gr.Textbox(
                label="Answer",
                lines=1,
                interactive=False
            )

    submit_btn.click(
        fn=ask,
        inputs=[question, openai_api_key, gemini_api_key, anthropic_api_key, file_name],
        outputs=answer
    )

    QUESTION_FILE_PATH = "data/gaia_validation.jsonl"
    
    gr.Examples(
        label="GAIA Benchmark Level 1 Problems",
        examples=get_questions(QUESTION_FILE_PATH, 1),
        inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
        outputs=answer,
        cache_examples=False
    )

    gr.Examples(
        label="GAIA Benchmark Level 2 Problems",
        examples=get_questions(QUESTION_FILE_PATH, 2),
        inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
        outputs=answer,
        cache_examples=False
    )

    gr.Examples(
        label="GAIA Benchmark Level 3 Problems",
        examples=get_questions(QUESTION_FILE_PATH, 3),
        inputs=[question, level, ground_truth, file_name, openai_api_key, gemini_api_key, anthropic_api_key],
        outputs=answer,
        cache_examples=False
    )

grady.launch(mcp_server=True)