Spaces:
Running
Running
File size: 11,010 Bytes
dae5fc7 c4136a8 36320a3 738445b cd4a9a3 e9f64ec 3271e72 25f7970 0a57b44 3271e72 ef400ea d5c11ea 380302b bb2e1f2 380302b 9802e03 380302b d5c11ea 380302b d5c11ea 26e1b1b d5c11ea 380302b d5c11ea 380302b bb2e1f2 380302b bb2e1f2 8acfede bb2e1f2 74dae28 380302b 979095d 380302b 738445b 380302b 738445b 26e1b1b 0a57b44 380302b 738445b 380302b 03156b5 380302b 738445b 380302b 03156b5 380302b 738445b 380302b d5c11ea 380302b d5c11ea bbfd24e d5c11ea b1b034e 91d69dd d5c11ea 380302b d5c11ea 9802e03 d5c11ea 9802e03 d5c11ea 0290fda d5c11ea 0290fda d5c11ea c413f9d d5c11ea 9802e03 d5c11ea 9802e03 36320a3 bb2e1f2 9edf419 0290fda 081537e 979095d 081537e cf8a3af 8509d56 0290fda cf8a3af c413f9d cf8a3af 8acfede 2d172eb bb2e1f2 8acfede bb2e1f2 7364d74 bb2e1f2 7364d74 bb2e1f2 2d172eb 0290fda c90c1d1 0290fda c90c1d1 8acfede c90c1d1 8acfede c90c1d1 8acfede c90c1d1 c413f9d 380302b 8509d56 8131a67 8509d56 cf8a3af 0958f7d 8509d56 c413f9d 8509d56 51a98c0 528b643 8509d56 aa247a8 738445b 1183b4a 738445b 380302b 738445b 380302b 738445b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import openai, os, time
from datasets import load_dataset
from pymongo.mongo_client import MongoClient
DB_NAME = "airbnb_dataset"
COLLECTION_NAME = "listings_reviews"
def connect_to_database():
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
mongo_client = MongoClient(MONGODB_ATLAS_CLUSTER_URI, appname="advanced-rag")
db = mongo_client.get_database(DB_NAME)
collection = db.get_collection(COLLECTION_NAME)
return db, collection
def rag_ingestion(collection):
dataset = load_dataset("bstraehle/airbnb-san-francisco-202403-embed", streaming=True, split="train")
collection.delete_many({})
collection.insert_many(dataset)
return "Manually create a vector search index (in free tier, this feature is not available via SDK)"
def rag_retrieval_naive(openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection,
vector_index="vector_index"):
# Naive RAG: Semantic search
retrieval_result = vector_search_naive(
openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection,
vector_index
)
if not retrieval_result:
return "No results found."
#print(retrieval_result)
return retrieval_result
def rag_retrieval_advanced(openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection,
vector_index="vector_index"):
# Advanced RAG: Semantic search plus...
# 1a) Pre-retrieval processing: index filter (accomodates, bedrooms) plus...
# 1b) Post-retrieval processing: result filter (accomodates, bedrooms) plus...
# 2) Weighted average review, sorted in descending order
additional_stages = [
get_stage_average_review_and_review_count(),
get_stage_weighting(),
get_stage_sorting()
]
retrieval_result = vector_search_advanced(
openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection,
additional_stages,
vector_index
)
if not retrieval_result:
return "No results found."
#print(retrieval_result)
return retrieval_result
def inference(openai_api_key, prompt):
content = (
"Answer the question.\n"
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n"
"Keep the answer as concise as possible.\n\n"
f"Question: {prompt}\n"
"Helpful Answer: "
)
return invoke_llm(openai_api_key, content)
def rag_inference(openai_api_key, prompt, retrieval_result):
content = (
"Use the following pieces of context to answer the question at the end.\n"
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n"
"Keep the answer as concise as possible.\n\n"
f"{retrieval_result}\n\n"
f"Question: {prompt}\n"
"Helpful Answer: "
)
return invoke_llm(openai_api_key, content)
def invoke_llm(openai_api_key, content):
openai.api_key = openai_api_key
completion = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "You are an AirBnB listing recommendation system."},
{
"role": "user",
"content": content
}
],
temperature=0.01
)
return completion.choices[0].message.content
def vector_search_naive(openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection,
vector_index="vector_index"):
query_embedding = get_text_embedding(openai_api_key, prompt)
if query_embedding is None:
return "Invalid query or embedding generation failed."
vector_search_stage = {
"$vectorSearch": {
"index": vector_index,
"queryVector": query_embedding,
"path": "description_embedding",
"numCandidates": 150,
"limit": 25,
}
}
pipeline = [
vector_search_stage,
get_stage_include_fields(),
get_stage_filter_result(accomodates, bedrooms)
]
return invoke_search(db, collection, pipeline)
def vector_search_advanced(openai_api_key,
prompt,
accommodates,
bedrooms,
db,
collection,
additional_stages=[],
vector_index="vector_index"):
query_embedding = get_text_embedding(openai_api_key, prompt)
if query_embedding is None:
return "Invalid query or embedding generation failed."
vector_search_and_filter_stage = {
"$vectorSearch": {
"index": vector_index,
"queryVector": query_embedding,
"path": "description_embedding",
"numCandidates": 150,
"limit": 25,
"filter": {
"$and": [
{"accommodates": {"$eq": accommodates}},
{"bedrooms": {"$eq": bedrooms}}
]
},
}
}
pipeline = [
vector_search_and_filter_stage,
get_stage_include_fields()
] + additional_stages
return invoke_search(db, collection, pipeline)
def get_stage_exclude_fields():
return {
"$unset": "description_embedding"
}
def get_stage_include_fields():
return {
"$project": {
"id": 1,
"listing_url": 1,
"name": 1,
"description": 1,
"neighborhood_overview": 1,
"picture_url": 1,
"host_id": 1,
"host_url": 1,
"host_name": 1,
"host_since": 1,
"host_location": 1,
"host_about": 1,
"host_response_time": 1,
"host_response_rate": 1,
"host_acceptance_rate": 1,
"host_is_superhost": 1,
"host_thumbnail_url": 1,
"host_picture_url": 1,
"host_neighbourhood": 1,
"host_listings_count": 1,
"host_total_listings_count": 1,
"host_verifications": 1,
"host_has_profile_pic": 1,
"host_identity_verified": 1,
"neighbourhood": 1,
"neighbourhood_cleansed": 1,
"neighbourhood_group_cleansed": 1,
"latitude": 1,
"longitude": 1,
"property_type": 1,
"room_type": 1,
"accommodates": 1,
"bathrooms": 1,
"bathrooms_text": 1,
"bedrooms": 1,
"beds": 1,
"amenities": 1,
"price": 1,
"minimum_nights": 1,
"maximum_nights": 1,
"minimum_minimum_nights": 1,
"maximum_minimum_nights": 1,
"minimum_maximum_nights": 1,
"maximum_maximum_nights": 1,
"minimum_nights_avg_ntm": 1,
"maximum_nights_avg_ntm": 1,
"calendar_updated": 1,
"has_availability": 1,
"availability_30": 1,
"availability_60": 1,
"availability_90": 1,
"availability_365": 1,
"number_of_reviews": 1,
"number_of_reviews_ltm": 1,
"number_of_reviews_l30d": 1,
"first_review": 1,
"last_review": 1,
"review_scores_rating": 1,
"review_scores_accuracy": 1,
"review_scores_cleanliness": 1,
"review_scores_checkin": 1,
"review_scores_communication": 1,
"review_scores_location": 1,
"review_scores_value": 1,
"license": 1,
"instant_bookable": 1,
"calculated_host_listings_count": 1,
"calculated_host_listings_count_entire_homes": 1,
"calculated_host_listings_count_private_rooms": 1,
"calculated_host_listings_count_shared_rooms": 1,
"reviews_per_month": 1,
}
}
def get_stage_filter_result(accomodates, bedrooms):
return {
"$match": {
"accommodates": { "$eq": accomodates},
"bedrooms": { "$eq": bedrooms}
}
}
def get_stage_average_review_and_review_count():
return {
"$addFields": {
"averageReview": {
"$divide": [
{
"$add": [
"$review_scores_rating",
"$review_scores_accuracy",
"$review_scores_cleanliness",
"$review_scores_checkin",
"$review_scores_communication",
"$review_scores_location",
"$review_scores_value",
]
},
7
]
},
"reviewCount": "$number_of_reviews"
}
}
def get_stage_weighting():
return {
"$addFields": {
"weightedAverageReview": {
"$add": [
{"$multiply": ["$averageReview", 0.9]},
{"$multiply": ["$reviewCount", 0.1]},
]
}
}
}
def get_stage_sorting():
return {
"$sort": {"weightedAverageReview": -1}
}
def invoke_search(db, collection, pipeline):
results = collection.aggregate(pipeline)
print(f"Vector search millis elapsed: {get_millis_elapsed(db, collection, pipeline)}")
return list(results)
def get_millis_elapsed(db, collection, pipeline):
explain_query_execution = db.command(
"explain", {
"aggregate": collection.name,
"pipeline": pipeline,
"cursor": {}
},
verbosity="executionStats")
explain_vector_search = explain_query_execution["stages"][0]["$vectorSearch"]
return explain_vector_search["explain"]["collectors"]["allCollectorStats"]["millisElapsed"]
def get_text_embedding(openai_api_key, text):
if not text or not isinstance(text, str):
return None
openai.api_key = openai_api_key
try:
return openai.embeddings.create(
input=text,
model="text-embedding-3-small", dimensions=1536
).data[0].embedding
except Exception as e:
print(f"Error in get_embedding: {e}")
return None |