Spaces:
Sleeping
Sleeping
Commit
·
8bcc00e
1
Parent(s):
71f9869
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Author: Brian King
|
| 2 |
+
# For: BrandMuscle, Copyright 2023 All Rights Reserved
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import os
|
| 6 |
+
from llama_index import (
|
| 7 |
+
ServiceContext,
|
| 8 |
+
SimpleDirectoryReader,
|
| 9 |
+
VectorStoreIndex,
|
| 10 |
+
)
|
| 11 |
+
from llama_index.llms import OpenAI
|
| 12 |
+
import openai
|
| 13 |
+
|
| 14 |
+
# Define Streamlit layout and interaction
|
| 15 |
+
st.title("Streamlit App for PDF Retrieval and Text Generation")
|
| 16 |
+
|
| 17 |
+
# Upload PDF
|
| 18 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
| 19 |
+
|
| 20 |
+
@st.cache_resource(show_spinner=False)
|
| 21 |
+
def load_data(uploaded_file):
|
| 22 |
+
with st.spinner('Indexing document...'):
|
| 23 |
+
# Save the uploaded file temporarily
|
| 24 |
+
with open("temp.pdf", "wb") as f:
|
| 25 |
+
f.write(uploaded_file.read())
|
| 26 |
+
# Read and index documents using SimpleDirectoryReader
|
| 27 |
+
reader = SimpleDirectoryReader(input_dir="./", recursive=False)
|
| 28 |
+
docs = reader.load_data()
|
| 29 |
+
service_context = ServiceContext.from_defaults(
|
| 30 |
+
llm=OpenAI(
|
| 31 |
+
model="gpt-3.5-turbo-16k",
|
| 32 |
+
temperature=0.1,
|
| 33 |
+
),
|
| 34 |
+
system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text."
|
| 35 |
+
)
|
| 36 |
+
index = VectorStoreIndex.from_documents(docs, service_context=service_context)
|
| 37 |
+
return index
|
| 38 |
+
|
| 39 |
+
# Placeholder for document indexing
|
| 40 |
+
if uploaded_file is not None:
|
| 41 |
+
index = load_data(uploaded_file)
|
| 42 |
+
|
| 43 |
+
# Take user query input
|
| 44 |
+
user_query = st.text_input("Search for the products/info you want to use to ground your generated text content:")
|
| 45 |
+
|
| 46 |
+
# Initialize session_state for retrieved_text if not already present
|
| 47 |
+
if 'retrieved_text' not in st.session_state:
|
| 48 |
+
st.session_state['retrieved_text'] = ''
|
| 49 |
+
|
| 50 |
+
# Search and display retrieved text
|
| 51 |
+
if st.button("Retrieve"):
|
| 52 |
+
with st.spinner('Retrieving text...'):
|
| 53 |
+
# Use VectorStoreIndex to search
|
| 54 |
+
query_engine = index.as_query_engine(similarity_top_k=3)
|
| 55 |
+
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
| 56 |
+
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}")
|
| 57 |
+
|
| 58 |
+
# Select content type
|
| 59 |
+
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"])
|
| 60 |
+
|
| 61 |
+
# Generate text based on retrieved text and selected content type
|
| 62 |
+
if st.button("Generate") and content_type:
|
| 63 |
+
with st.spinner('Generating text...'):
|
| 64 |
+
# Generate text using OpenAI API
|
| 65 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 66 |
+
try:
|
| 67 |
+
if content_type == "Blog":
|
| 68 |
+
prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}"
|
| 69 |
+
elif content_type == "Tweet":
|
| 70 |
+
prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}"
|
| 71 |
+
response = openai.ChatCompletion.create(
|
| 72 |
+
model="gpt-3.5-turbo-16k",
|
| 73 |
+
messages=[
|
| 74 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 75 |
+
{"role": "user", "content": prompt}
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
generated_text = response['choices'][0]['message']['content']
|
| 79 |
+
st.write(f"Generated Text: {generated_text}")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
st.write(f"An error occurred: {e}")
|