|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import shutil | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | from apscheduler.schedulers.background import BackgroundScheduler | 
					
						
						|  | from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  |  | 
					
						
						|  | from src.about import ( | 
					
						
						|  | CITATION_BUTTON_LABEL, | 
					
						
						|  | CITATION_BUTTON_TEXT, | 
					
						
						|  | EVALUATION_REQUESTS_TEXT, | 
					
						
						|  | EVALUATION_SCRIPT, | 
					
						
						|  | INTRODUCTION_TEXT, | 
					
						
						|  | LLM_BENCHMARKS_TEXT, | 
					
						
						|  | TITLE, | 
					
						
						|  | ) | 
					
						
						|  | from src.display.css_html_js import custom_css | 
					
						
						|  | from src.display.utils import ( | 
					
						
						|  | BENCHMARK_COLS, | 
					
						
						|  | COLS, | 
					
						
						|  | EVAL_COLS, | 
					
						
						|  | EVAL_TYPES, | 
					
						
						|  | AutoEvalColumn, | 
					
						
						|  | ModelType, | 
					
						
						|  | Precision, | 
					
						
						|  | WeightType, | 
					
						
						|  | fields, | 
					
						
						|  | ) | 
					
						
						|  | from src.envs import ( | 
					
						
						|  | API, | 
					
						
						|  | CACHE_PATH, | 
					
						
						|  | EVAL_REQUESTS_PATH, | 
					
						
						|  | EVAL_RESULTS_PATH, | 
					
						
						|  | REPO_ID, | 
					
						
						|  | REQUESTS_REPO, | 
					
						
						|  | RESULTS_REPO, | 
					
						
						|  | TOKEN, | 
					
						
						|  | ) | 
					
						
						|  | from src.populate import get_evaluation_requests_df, get_leaderboard_df | 
					
						
						|  | from src.submission.submit import add_new_eval | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def restart_space(): | 
					
						
						|  | API.restart_space(repo_id=REPO_ID) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shutil.rmtree(CACHE_PATH, ignore_errors=True) | 
					
						
						|  | try: | 
					
						
						|  | snapshot_download( | 
					
						
						|  | repo_id=REQUESTS_REPO, | 
					
						
						|  | local_dir=EVAL_REQUESTS_PATH, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | tqdm_class=None, | 
					
						
						|  | etag_timeout=30, | 
					
						
						|  | token=TOKEN, | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  | restart_space() | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | snapshot_download( | 
					
						
						|  | repo_id=RESULTS_REPO, | 
					
						
						|  | local_dir=EVAL_RESULTS_PATH, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | tqdm_class=None, | 
					
						
						|  | etag_timeout=30, | 
					
						
						|  | token=TOKEN, | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  | restart_space() | 
					
						
						|  |  | 
					
						
						|  | LEADERBOARD_DF = get_leaderboard_df( | 
					
						
						|  | EVAL_RESULTS_PATH, | 
					
						
						|  | EVAL_REQUESTS_PATH, | 
					
						
						|  | COLS, | 
					
						
						|  | BENCHMARK_COLS, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | finished_eval_requests_df, | 
					
						
						|  | running_eval_requests_df, | 
					
						
						|  | pending_eval_requests_df, | 
					
						
						|  | ) = get_evaluation_requests_df(EVAL_REQUESTS_PATH, EVAL_COLS) | 
					
						
						|  |  | 
					
						
						|  | def init_leaderboard(dataframe): | 
					
						
						|  | if dataframe is None or dataframe.empty: | 
					
						
						|  | raise ValueError("Leaderboard DataFrame is empty or None.") | 
					
						
						|  | return Leaderboard( | 
					
						
						|  | value=dataframe, | 
					
						
						|  | datatype=[c.type for c in fields(AutoEvalColumn)], | 
					
						
						|  | select_columns=SelectColumns( | 
					
						
						|  | default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | 
					
						
						|  | cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | 
					
						
						|  | label="Columns", | 
					
						
						|  | ), | 
					
						
						|  | search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | 
					
						
						|  | hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | 
					
						
						|  | filter_columns=[ | 
					
						
						|  | ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Floating-point format"), | 
					
						
						|  | ColumnFilter( | 
					
						
						|  | AutoEvalColumn.params.name, | 
					
						
						|  | type="slider", | 
					
						
						|  | min=1, | 
					
						
						|  | max=500, | 
					
						
						|  | label="Number of parameters (billions)", | 
					
						
						|  | ), | 
					
						
						|  | ], | 
					
						
						|  | bool_checkboxgroup_label=' ', | 
					
						
						|  | interactive=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | demo = gr.Blocks(css=custom_css) | 
					
						
						|  | with demo: | 
					
						
						|  | gr.HTML(TITLE) | 
					
						
						|  | gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(elem_classes="tab-buttons") as tabs: | 
					
						
						|  | with gr.TabItem("π Ranking", elem_id="llm-benchmark-tab-table", id=0): | 
					
						
						|  | leaderboard = init_leaderboard(LEADERBOARD_DF) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π§  About", elem_id="llm-benchmark-tab-table", id=2): | 
					
						
						|  | gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | "Evaluation script", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | EVALUATION_SCRIPT, | 
					
						
						|  | elem_classes="markdown-text", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π§ͺ Submissions", elem_id="llm-benchmark-tab-table", id=3): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown(EVALUATION_REQUESTS_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β
 Finished ({len(finished_eval_requests_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | finished_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=finished_eval_requests_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β³ Pending ({len(pending_eval_requests_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | pending_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=pending_eval_requests_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown("# βοΈ Submission", elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | model_name_textbox = gr.Textbox(label="Model name") | 
					
						
						|  | revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | 
					
						
						|  | model_type = gr.Dropdown( | 
					
						
						|  | choices=[t.to_str(" ") for t in ModelType if t in [ModelType.PT, ModelType.FT]], | 
					
						
						|  | label="Model type", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value=None, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | submit_button = gr.Button("Submit") | 
					
						
						|  | submission_result = gr.Markdown() | 
					
						
						|  |  | 
					
						
						|  | def submit_with_braindao_check(model_name, revision, model_type): | 
					
						
						|  | if model_name.split("/")[0] == "braindao": | 
					
						
						|  | model_type = ModelType.BrainDAO.to_str(" ") | 
					
						
						|  | return add_new_eval(model_name, revision, model_type) | 
					
						
						|  |  | 
					
						
						|  | submit_button.click( | 
					
						
						|  | submit_with_braindao_check, | 
					
						
						|  | [ | 
					
						
						|  | model_name_textbox, | 
					
						
						|  |  | 
					
						
						|  | revision_name_textbox, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_type, | 
					
						
						|  | ], | 
					
						
						|  | submission_result, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scheduler = BackgroundScheduler() | 
					
						
						|  | scheduler.add_job(restart_space, "interval", seconds=900) | 
					
						
						|  | scheduler.start() | 
					
						
						|  | demo.queue(default_concurrency_limit=40).launch( | 
					
						
						|  | server_name="0.0.0.0", | 
					
						
						|  | allowed_paths=["images/solbench.svg"], | 
					
						
						|  | ) | 
					
						
						|  |  |