Spaces:
Running
Running
add documents
Browse files- README.md +115 -31
- __main__.py +2 -2
- matching_series.py +139 -28
README.md
CHANGED
@@ -26,9 +26,97 @@ At minium, the metric requires the original time-series and the generated time-s
|
|
26 |
>>> references = np.random.rand(num_reference, seq_len, num_features)
|
27 |
>>> predictions = np.random.rand(num_generation, seq_len, num_features)
|
28 |
>>> metric = evaluate.load("bowdbeg/matching_series")
|
29 |
-
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000)
|
30 |
>>> print(results)
|
31 |
-
{'precision_distance': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```
|
33 |
|
34 |
### Inputs
|
@@ -38,6 +126,15 @@ At minium, the metric requires the original time-series and the generated time-s
|
|
38 |
- **cuc_n_calculation**: (int, optional): The number of samples to compute the coverage because sampling exists. Default is 3.
|
39 |
- **cuc_n_samples**: (list of int, optional): The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
|
40 |
- **metric**: (str, optional): The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
### Output Values
|
43 |
|
@@ -45,43 +142,30 @@ Let prediction instances be $P = \{p_1, p_2, \ldots, p_n\}$ and reference instan
|
|
45 |
|
46 |
- **precision_distance**: (float): Average of the distance between the generated instance and the reference instance with the lowest distance. Intuitively, this is similar to precision in classification. In the equation, $\frac{1}{n} \sum_{i=1}^{n} \min_{j} \mathrm{distance}(p_i, r_j)$.
|
47 |
- **recall_distance**: (float): Average of the distance between the reference instance and the with the lowest distance. Intuitively, this is similar to recall in classification. In the equation, $\frac{1}{m} \sum_{j=1}^{m} \min_{i} \mathrm{distance}(p_i, r_j)$.
|
48 |
-
- **
|
49 |
- **index_distance**: (float): Average of the distance between the generated instance and the reference instance with the same index. In the equation, $\frac{1}{n} \sum_{i=1}^{n} \mathrm{distance}(p_i, r_i)$.
|
50 |
-
- **
|
51 |
-
- **
|
52 |
-
- **
|
53 |
-
- **
|
54 |
-
- **
|
55 |
-
-
|
56 |
-
- **
|
57 |
-
- **
|
58 |
-
- **
|
59 |
-
- **
|
60 |
-
|
61 |
-
|
62 |
-
- **matching_recall_features**: (list of float): matching_recall computed individually for each feature.
|
63 |
-
- **matching_f1_features**: (list of float): matching_f1 computed individually for each feature.
|
64 |
-
- **macro_matching_precision**: (float): Average of the matching_precision_features.
|
65 |
-
- **macro_matching_recall**: (float): Average of the matching_recall_features.
|
66 |
-
- **macro_matching_f1**: (float): Average of the matching_f1_features.
|
67 |
-
- **coverages**: (list of float): Coverage of the matching instances computed on the sampled generated data in cuc_n_samples. In the equation, $[\frac{ | \{ j | \min_{j} \mathrm{distance}(p_i, r_j) \text{where}~p_i \in \mathrm{sample}(P, \mathrm{n\_sample}) \} | }{m} \text{for}~\mathrm{n\_sample} \in \mathrm{cuc\_n\_samples} ]$.
|
68 |
-
- **cuc**: (float): Coverage of the matching instances. In the equation, $\frac{ | \{i | \min_{i} \mathrm{distance}(p_i, r_j) < \mathrm{threshold}\} | }{n}$.
|
69 |
-
- **coverages_features**: (list of list of float): coverages computed individually for each feature.
|
70 |
-
- **cuc_features**: (list of float): cuc computed individually for each feature.
|
71 |
-
- **macro_coverages**: (list of float): Average of the coverages_features.
|
72 |
-
- **macro_cuc**: (float): Average of the cuc_features.
|
73 |
-
|
74 |
-
#### Values from Popular Papers
|
75 |
<!-- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.* -->
|
76 |
|
77 |
-
### Examples
|
78 |
<!-- *Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.* -->
|
79 |
|
80 |
## Limitations and Bias
|
81 |
This metric is based on the assumption that the generated time-series should match the original time-series. This may not be the case in some scenarios. The metric may not be suitable for evaluating time-series generation models that are not required to match the original time-series.
|
82 |
|
83 |
-
## Citation
|
84 |
<!-- *Cite the source where this metric was introduced.* -->
|
85 |
|
86 |
-
## Further References
|
87 |
<!-- *Add any useful further references.* -->
|
|
|
26 |
>>> references = np.random.rand(num_reference, seq_len, num_features)
|
27 |
>>> predictions = np.random.rand(num_generation, seq_len, num_features)
|
28 |
>>> metric = evaluate.load("bowdbeg/matching_series")
|
29 |
+
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000, return_all=True)
|
30 |
>>> print(results)
|
31 |
+
{'precision_distance': 0.1573285013437271, 'recall_distance': 0.15106813609600067, 'mean_distance': 0.1541983187198639, 'index_distance': 0.16858606040477753, 'matching_precision': 0.06, 'matching_recall': 1.0, 'matching_f1': 0.11320756503381972, 'cuc': 0.12428571428571429, 'macro_precision_distance': 0.13803552389144896, 'macro_recall_distance': 0.12179495096206665, 'macro_mean_distance': 0.1299152374267578, 'macro_index_distance': 0.16858604848384856, 'macro_matching_precision': 0.094, 'macro_matching_recall': 0.97, 'macro_matching_f1': 0.17132608782381706, 'macro_cuc': 0.11419285714285714, 'distance': array([[[0.20763363, 0.16514072, 0.18695284, ..., 0.15037987,
|
32 |
+
0.19424284, 0.15943716],
|
33 |
+
[0.17150438, 0.18020014, 0.17024504, ..., 0.18492931,
|
34 |
+
0.18814348, 0.204207 ],
|
35 |
+
[0.1769202 , 0.15609328, 0.17568389, ..., 0.17731658,
|
36 |
+
0.2027854 , 0.13216409],
|
37 |
+
...,
|
38 |
+
[0.1838122 , 0.19475608, 0.14176111, ..., 0.1635111 ,
|
39 |
+
0.1652672 , 0.17145865],
|
40 |
+
[0.16084194, 0.14208058, 0.17567575, ..., 0.15595785,
|
41 |
+
0.16614595, 0.17834347],
|
42 |
+
[0.16388315, 0.14126392, 0.18021484, ..., 0.16791071,
|
43 |
+
0.18403953, 0.16666758]],
|
44 |
+
|
45 |
+
[[0.16838932, 0.18878576, 0.17654441, ..., 0.1747057 ,
|
46 |
+
0.16590554, 0.16901629],
|
47 |
+
[0.16553226, 0.1882645 , 0.17863466, ..., 0.19269662,
|
48 |
+
0.20451452, 0.19941731],
|
49 |
+
[0.16502398, 0.16619626, 0.18069996, ..., 0.16124909,
|
50 |
+
0.18933088, 0.1495165 ],
|
51 |
+
...,
|
52 |
+
[0.15946846, 0.19988221, 0.17965002, ..., 0.12951666,
|
53 |
+
0.2067793 , 0.13811146],
|
54 |
+
[0.16227122, 0.17736743, 0.18641905, ..., 0.15038314,
|
55 |
+
0.20186146, 0.17849396],
|
56 |
+
[0.16410898, 0.18323919, 0.16945514, ..., 0.15783694,
|
57 |
+
0.21556957, 0.17172968]],
|
58 |
+
|
59 |
+
[[0.18094379, 0.1364854 , 0.18436092, ..., 0.187335 ,
|
60 |
+
0.16240291, 0.13713893],
|
61 |
+
[0.18005298, 0.15323727, 0.15788248, ..., 0.19451861,
|
62 |
+
0.12822135, 0.14064161],
|
63 |
+
[0.1564556 , 0.17312287, 0.1856657 , ..., 0.17237219,
|
64 |
+
0.1596888 , 0.16547912],
|
65 |
+
...,
|
66 |
+
[0.15611127, 0.16121496, 0.15533476, ..., 0.16520709,
|
67 |
+
0.1427248 , 0.19455005],
|
68 |
+
[0.17268528, 0.17360437, 0.15962966, ..., 0.18134868,
|
69 |
+
0.15509704, 0.20222983],
|
70 |
+
[0.18704675, 0.15934442, 0.14928888, ..., 0.18904984,
|
71 |
+
0.16192877, 0.18576236]],
|
72 |
+
|
73 |
+
...,
|
74 |
+
|
75 |
+
[[0.13717972, 0.15645625, 0.16123378, ..., 0.19453087,
|
76 |
+
0.14441733, 0.1487963 ],
|
77 |
+
[0.1454296 , 0.13368016, 0.18665504, ..., 0.16096605,
|
78 |
+
0.15130125, 0.18332979],
|
79 |
+
[0.14654924, 0.19097947, 0.19629759, ..., 0.15887487,
|
80 |
+
0.19266474, 0.17430782],
|
81 |
+
...,
|
82 |
+
[0.161704 , 0.16357127, 0.18512094, ..., 0.16441964,
|
83 |
+
0.13961458, 0.17298506],
|
84 |
+
[0.1366249 , 0.15852758, 0.1982772 , ..., 0.18822236,
|
85 |
+
0.16153064, 0.19617072],
|
86 |
+
[0.14570995, 0.15005183, 0.19667573, ..., 0.1856473 ,
|
87 |
+
0.18603194, 0.19179863]],
|
88 |
+
|
89 |
+
[[0.17813908, 0.176182 , 0.16847256, ..., 0.16903524,
|
90 |
+
0.17150073, 0.15068175],
|
91 |
+
[0.17632519, 0.1404587 , 0.16388708, ..., 0.16873878,
|
92 |
+
0.15744762, 0.198475 ],
|
93 |
+
[0.14986345, 0.1517829 , 0.17624639, ..., 0.18365957,
|
94 |
+
0.17399347, 0.15581599],
|
95 |
+
...,
|
96 |
+
[0.16128553, 0.1974935 , 0.13766351, ..., 0.14026196,
|
97 |
+
0.15450196, 0.16110381],
|
98 |
+
[0.16281141, 0.14699166, 0.16935429, ..., 0.1394466 ,
|
99 |
+
0.1717883 , 0.16191883],
|
100 |
+
[0.14886455, 0.1603608 , 0.15172943, ..., 0.12851712,
|
101 |
+
0.19859877, 0.15576601]],
|
102 |
+
|
103 |
+
[[0.20230632, 0.19680001, 0.17143433, ..., 0.18601838,
|
104 |
+
0.15998998, 0.16043548],
|
105 |
+
[0.19753966, 0.19073424, 0.15046756, ..., 0.18833323,
|
106 |
+
0.16755773, 0.20127842],
|
107 |
+
[0.16012056, 0.16638812, 0.16493171, ..., 0.15849902,
|
108 |
+
0.20269662, 0.1857642 ],
|
109 |
+
...,
|
110 |
+
[0.16341361, 0.19168772, 0.16597596, ..., 0.15715535,
|
111 |
+
0.18122095, 0.17266828],
|
112 |
+
[0.1570099 , 0.18294124, 0.16713732, ..., 0.17442709,
|
113 |
+
0.17020254, 0.18804537],
|
114 |
+
[0.16752282, 0.1295177 , 0.18792175, ..., 0.13976808,
|
115 |
+
0.21054329, 0.18118018]]], dtype=float32), 'match': array([4, 7, 3, 9, 4, 0, 7, 5, 4, 7, 9, 7, 7, 5, 7, 0, 0, 7, 4, 3, 3, 2,
|
116 |
+
8, 9, 4, 4, 5, 1, 4, 9, 0, 2, 7, 3, 6, 5, 6, 3, 2, 2, 2, 6, 9, 4,
|
117 |
+
4, 9, 1, 6, 0, 6, 9, 2, 0, 6, 7, 2, 0, 4, 5, 2, 3, 9, 2, 3, 9, 1,
|
118 |
+
6, 4, 8, 9, 7, 4, 6, 5, 5, 6, 9, 5, 6, 2, 9, 4, 9, 3, 2, 9, 9, 7,
|
119 |
+
9, 5, 9, 1, 7, 6, 4, 4, 5, 4, 7, 5]), 'match_inv': array([15, 91, 79, 4, 4, 4, 49, 4, 49, 45]), 'coverages': [0.10000000000000002, 0.16666666666666666, 0.3666666666666667, 0.6333333333333333, 0.8333333333333334, 0.9, 1.0], 'precision_distance_features': [0.1383965164422989, 0.13804036378860474, 0.1388234943151474, 0.1392393559217453, 0.1357768476009369, 0.1364508718252182, 0.14039862155914307, 0.13417008519172668, 0.1368638128042221, 0.14219526946544647], 'recall_distance_features': [0.11730053275823593, 0.12232911586761475, 0.12200610339641571, 0.12571024894714355, 0.12081331014633179, 0.11693283170461655, 0.12660981714725494, 0.12248671054840088, 0.11726576089859009, 0.12649507820606232], 'mean_distance_features': [0.1278485246002674, 0.13018473982810974, 0.13041479885578156, 0.13247480243444443, 0.12829507887363434, 0.12669185176491737, 0.133504219353199, 0.12832839787006378, 0.1270647868514061, 0.1343451738357544], 'index_distance_features': [0.17064405977725983, 0.17019756138324738, 0.17373089492321014, 0.17575454711914062, 0.15942324697971344, 0.1615942418575287, 0.16519878804683685, 0.1714271903038025, 0.17072594165802002, 0.16716401278972626], 'matching_precision_features': [0.1, 0.09, 0.1, 0.1, 0.09, 0.09, 0.1, 0.08, 0.09, 0.1], 'matching_recall_features': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 0.9, 1.0], 'matching_f1_features': [0.18181819851239656, 0.16513763164885095, 0.18181819851239656, 0.18181819851239656, 0.16513763164885095, 0.16513763164885095, 0.18000001639999985, 0.14693879251145342, 0.16363638033057834, 0.18181819851239656], 'cuc_features': [0.11935714285714286, 0.11578571428571431, 0.11814285714285715, 0.12407142857142857, 0.11207142857142856, 0.11821428571428572, 0.10807142857142855, 0.09635714285714285, 0.10700000000000001, 0.12285714285714286], 'coverages_features': [[0.10000000000000002, 0.20000000000000004, 0.26666666666666666, 0.4666666666666666, 0.7666666666666666, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3666666666666667, 0.5666666666666668, 0.6, 0.8333333333333334, 1.0], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.6999999999999998, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.6, 0.7333333333333333, 0.9333333333333332, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5, 0.6666666666666666, 0.7666666666666666, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3333333333333333, 0.5333333333333333, 0.7666666666666666, 0.8333333333333334, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5333333333333333, 0.6999999999999998, 0.7666666666666666, 0.9], [0.10000000000000002, 0.20000000000000004, 0.2333333333333333, 0.4666666666666666, 0.5333333333333333, 0.6333333333333333, 0.9], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.5666666666666667, 0.8000000000000002, 0.9], [0.10000000000000002, 0.16666666666666666, 0.30000000000000004, 0.5666666666666667, 0.7999999999999999, 0.9, 1.0]]}
|
120 |
```
|
121 |
|
122 |
### Inputs
|
|
|
126 |
- **cuc_n_calculation**: (int, optional): The number of samples to compute the coverage because sampling exists. Default is 3.
|
127 |
- **cuc_n_samples**: (list of int, optional): The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
|
128 |
- **metric**: (str, optional): The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
|
129 |
+
- **num_processes**: (int, optional): The number of processes to use for computing the distance. Default is 1.
|
130 |
+
- **instance_normalization**: (bool, optional): Whether to normalize the instances along the time axis. Default is False.
|
131 |
+
- **return_distance**: (bool, optional): Whether to return the distance matrix. Default is False.
|
132 |
+
- **return_matching**: (bool, optional): Whether to return the matching matrix. Default is False.
|
133 |
+
- **return_each_features**: (bool, optional): Whether to return the results for each feature. Default is False.
|
134 |
+
- **return_coverages**: (bool, optional): Whether to return the coverages. Default is False.
|
135 |
+
- **return_all**: (bool, optional): Whether to return all the results. Default is False.
|
136 |
+
- **dtype**: (str, optional): The data type used for computation. Default is "float32".
|
137 |
+
- **eps**: (float, optional): The epsilon value to avoid division by zero. Default is 1e-8.
|
138 |
|
139 |
### Output Values
|
140 |
|
|
|
142 |
|
143 |
- **precision_distance**: (float): Average of the distance between the generated instance and the reference instance with the lowest distance. Intuitively, this is similar to precision in classification. In the equation, $\frac{1}{n} \sum_{i=1}^{n} \min_{j} \mathrm{distance}(p_i, r_j)$.
|
144 |
- **recall_distance**: (float): Average of the distance between the reference instance and the with the lowest distance. Intuitively, this is similar to recall in classification. In the equation, $\frac{1}{m} \sum_{j=1}^{m} \min_{i} \mathrm{distance}(p_i, r_j)$.
|
145 |
+
- **mean_disntance**: (float): Average of the precision_distance and recall_distance.
|
146 |
- **index_distance**: (float): Average of the distance between the generated instance and the reference instance with the same index. In the equation, $\frac{1}{n} \sum_{i=1}^{n} \mathrm{distance}(p_i, r_i)$.
|
147 |
+
- **matching_precision**: (float): Precision of the matching instances, which means how predictions are covered by references, i.e., how accurate the predictions are. In the equation, $\frac{ | \{i | \argmin_{i} \mathrm{distance}(p_i, r_j)\} | }{n}$.
|
148 |
+
- **matching_recall**: (float): Recall of the matching instances, which means how predictions cover references. In the equation, $\frac{ | \{j | \argmin_{j} \mathrm{distance}(p_i, r_j)\} | }{m}$.
|
149 |
+
- **matching_f1**: (float): F1-score of the matching instances, harmonic mean of the matching_precision and matching_recall.
|
150 |
+
- **coverages**: (list of float): Coverage of the matching instances computed on the sampled generated data in cuc_n_samples. In the equation, $[\frac{1}{m} | \{ j \mid \argmin_{j} \mathrm{distance}(p_i, r_j)~\text{where $p_i \in \mathrm{sample}(P, \mathrm{n\_sample})$} \} | ~\text{for}~\mathrm{n\_sample} \in \mathrm{cuc\_n\_samples} ]$.
|
151 |
+
- **cuc**: (float): Under the curve of the coverage. In the equation, $\int_{0}^{n} \mathrm{coverage}(x) dx$. As an approximation, the trapezoidal rule is used.
|
152 |
+
- **.\*_features**: (list of float): The values computed individually for each feature.
|
153 |
+
- **macro_.\***: (float): Averaged values computed for each feature, average of the \*\_features.
|
154 |
+
- **distance**: (numpy.ndarray): The distance matrix between the generated instances and the reference instances.
|
155 |
+
- **match**: (numpy.ndarray): The matching matrix between the generated instances and the reference instances.
|
156 |
+
- **match_inv**: (numpy.ndarray): The matching matrix between the reference instances and the generated instances.
|
157 |
+
|
158 |
+
<!-- #### Values from Popular Papers -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
<!-- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.* -->
|
160 |
|
161 |
+
<!-- ### Examples -->
|
162 |
<!-- *Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.* -->
|
163 |
|
164 |
## Limitations and Bias
|
165 |
This metric is based on the assumption that the generated time-series should match the original time-series. This may not be the case in some scenarios. The metric may not be suitable for evaluating time-series generation models that are not required to match the original time-series.
|
166 |
|
167 |
+
<!-- ## Citation -->
|
168 |
<!-- *Cite the source where this metric was introduced.* -->
|
169 |
|
170 |
+
<!-- ## Further References -->
|
171 |
<!-- *Add any useful further references.* -->
|
__main__.py
CHANGED
@@ -15,7 +15,7 @@ parser.add_argument("predictions", type=str, help="Path to the numpy array conta
|
|
15 |
parser.add_argument("references", type=str, help="Path to the numpy array containing the references")
|
16 |
parser.add_argument("--output", type=str, help="Path to the output file")
|
17 |
parser.add_argument("--batch_size", type=int, help="Batch size to use for the computation")
|
18 |
-
parser.add_argument("--
|
19 |
parser.add_argument("--dtype", type=str, help="Data type to use for the computation", default="float32")
|
20 |
parser.add_argument("--debug", action="store_true", help="Debug mode")
|
21 |
args = parser.parse_args()
|
@@ -43,7 +43,7 @@ results = metric.compute(
|
|
43 |
predictions=predictions,
|
44 |
references=references,
|
45 |
batch_size=args.batch_size,
|
46 |
-
|
47 |
return_each_features=True,
|
48 |
return_coverages=True,
|
49 |
dtype=args.dtype,
|
|
|
15 |
parser.add_argument("references", type=str, help="Path to the numpy array containing the references")
|
16 |
parser.add_argument("--output", type=str, help="Path to the output file")
|
17 |
parser.add_argument("--batch_size", type=int, help="Batch size to use for the computation")
|
18 |
+
parser.add_argument("--num_processes", type=int, help="Batch size to use for the computation", default=1)
|
19 |
parser.add_argument("--dtype", type=str, help="Data type to use for the computation", default="float32")
|
20 |
parser.add_argument("--debug", action="store_true", help="Debug mode")
|
21 |
args = parser.parse_args()
|
|
|
43 |
predictions=predictions,
|
44 |
references=references,
|
45 |
batch_size=args.batch_size,
|
46 |
+
num_processes=args.num_process,
|
47 |
return_each_features=True,
|
48 |
return_coverages=True,
|
49 |
dtype=args.dtype,
|
matching_series.py
CHANGED
@@ -11,7 +11,7 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
import concurrent.futures
|
17 |
import math
|
@@ -23,37 +23,150 @@ import evaluate
|
|
23 |
import numpy as np
|
24 |
|
25 |
# TODO: Add BibTeX citation
|
26 |
-
_CITATION = """
|
27 |
-
@InProceedings{huggingface:module,
|
28 |
-
title = {A great new module},
|
29 |
-
authors={huggingface, Inc.},
|
30 |
-
year={2020}
|
31 |
-
}
|
32 |
-
"""
|
33 |
|
34 |
# TODO: Add description of the module here
|
35 |
_DESCRIPTION = """\
|
36 |
-
|
37 |
"""
|
38 |
|
39 |
|
40 |
-
# TODO: Add description of the arguments of the module here
|
41 |
_KWARGS_DESCRIPTION = """
|
42 |
Calculates how good are predictions given some references, using certain scores
|
43 |
Args:
|
44 |
-
predictions: list of generated time
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
Returns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
Examples:
|
50 |
Examples should be written in doctest format, and should illustrate how
|
51 |
to use the function.
|
52 |
|
53 |
-
>>>
|
54 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
>>> print(results)
|
56 |
-
{'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
|
59 |
|
@@ -135,15 +248,15 @@ class matching_series(evaluate.Metric):
|
|
135 |
cuc_n_calculation: int = 3,
|
136 |
cuc_n_samples: Union[List[int], str] = "auto",
|
137 |
metric: str = "mse",
|
138 |
-
|
|
|
139 |
return_distance: bool = False,
|
140 |
return_matching: bool = False,
|
141 |
return_each_features: bool = False,
|
142 |
return_coverages: bool = False,
|
143 |
return_all: bool = False,
|
144 |
dtype=np.float32,
|
145 |
-
|
146 |
-
eps: float = 1e-10,
|
147 |
):
|
148 |
"""
|
149 |
Compute the scores of the module given the predictions and references
|
@@ -185,7 +298,7 @@ class matching_series(evaluate.Metric):
|
|
185 |
references=references,
|
186 |
metric=metric,
|
187 |
batch_size=batch_size,
|
188 |
-
|
189 |
dtype=dtype,
|
190 |
)
|
191 |
|
@@ -281,13 +394,13 @@ class matching_series(evaluate.Metric):
|
|
281 |
references: np.ndarray,
|
282 |
metric: str,
|
283 |
batch_size: Optional[int] = None,
|
284 |
-
|
285 |
dtype=np.float32,
|
286 |
):
|
287 |
# distance between predictions and references for all example combinations for each features
|
288 |
# shape: (num_generation, num_reference, num_features)
|
289 |
if batch_size is not None:
|
290 |
-
if
|
291 |
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
|
292 |
idxs = [
|
293 |
(i, j)
|
@@ -298,7 +411,7 @@ class matching_series(evaluate.Metric):
|
|
298 |
(predictions[i : i + batch_size, None], references[None, j : j + batch_size], metric, -2)
|
299 |
for i, j in idxs
|
300 |
]
|
301 |
-
with concurrent.futures.ProcessPoolExecutor(max_workers=
|
302 |
results = executor.map(
|
303 |
self._compute_distance,
|
304 |
*zip(*args),
|
@@ -325,7 +438,7 @@ class matching_series(evaluate.Metric):
|
|
325 |
def _compute_metrics(
|
326 |
self,
|
327 |
distance: np.ndarray,
|
328 |
-
eps: float = 1e-
|
329 |
cuc_n_calculation: int = 3,
|
330 |
cuc_n_samples: Union[List[int], str] = "auto",
|
331 |
) -> dict[str, float | list[float]]:
|
@@ -348,19 +461,17 @@ class matching_series(evaluate.Metric):
|
|
348 |
best_match_inv = np.argmin(distance, axis=0)
|
349 |
recall_distance = distance[best_match_inv, np.arange(len(best_match_inv))].mean().item()
|
350 |
|
351 |
-
f1_distance = 2 / (1 / (precision_distance + eps) + 1 / (recall_distance + eps))
|
352 |
mean_distance = (precision_distance + recall_distance) / 2
|
353 |
|
354 |
# matching precision, recall and f1
|
355 |
-
matching_recall = np.unique(best_match).size / len(best_match_inv)
|
356 |
matching_precision = np.unique(best_match_inv).size / len(best_match)
|
|
|
357 |
matching_f1 = 2 / (1 / (matching_precision + eps) + 1 / (matching_recall + eps))
|
358 |
|
359 |
# cuc
|
360 |
coverages, cuc = self.compute_cuc(best_match, len(best_match_inv), cuc_n_calculation, cuc_n_samples)
|
361 |
return {
|
362 |
"precision_distance": precision_distance,
|
363 |
-
"f1_distance": f1_distance,
|
364 |
"recall_distance": recall_distance,
|
365 |
"mean_distance": mean_distance,
|
366 |
"index_distance": index_distance,
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances."""
|
15 |
|
16 |
import concurrent.futures
|
17 |
import math
|
|
|
23 |
import numpy as np
|
24 |
|
25 |
# TODO: Add BibTeX citation
|
26 |
+
_CITATION = """TBA"""
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# TODO: Add description of the module here
|
29 |
_DESCRIPTION = """\
|
30 |
+
Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances. The metric outputs a score greater or equal to 0, where 0 indicates a perfect generation.
|
31 |
"""
|
32 |
|
33 |
|
|
|
34 |
_KWARGS_DESCRIPTION = """
|
35 |
Calculates how good are predictions given some references, using certain scores
|
36 |
Args:
|
37 |
+
predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`.
|
38 |
+
references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`.
|
39 |
+
batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None.
|
40 |
+
cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3.
|
41 |
+
cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
|
42 |
+
metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
|
43 |
+
num_processes: int, optional: The number of processes to use for computing the distance. Default is 1.
|
44 |
+
instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False.
|
45 |
+
return_distance: bool, optional: Whether to return the distance matrix. Default is False.
|
46 |
+
return_matching: bool, optional: Whether to return the matching matrix. Default is False.
|
47 |
+
return_each_features: bool, optional: Whether to return the results for each feature. Default is False.
|
48 |
+
return_coverages: bool, optional: Whether to return the coverages. Default is False.
|
49 |
+
return_all: bool, optional: Whether to return all the results. Default is False.
|
50 |
+
dtype: str, optional: The data type used for computation. Default is "float32".
|
51 |
+
eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8.
|
52 |
Returns:
|
53 |
+
dict: A dictionary containing the following keys:
|
54 |
+
precision_distance (float): The precision of the distance.
|
55 |
+
recall_distance (float): The recall of the distance.
|
56 |
+
mean_distance (float): The mean of the distance.
|
57 |
+
index_distance (float): The index of the distance.
|
58 |
+
matching_precision (float): The precision of the matching instances.
|
59 |
+
matching_recall (float): The recall of the matching instances.
|
60 |
+
matching_f1 (float): The F1-score of the matching instances.
|
61 |
+
coverages (list of float): The coverages.
|
62 |
+
cuc (float): The coverage under the curve.
|
63 |
+
macro_.* (float): The macro value of the .*.
|
64 |
+
.*_features (list of float): The values computed individually for each feature.
|
65 |
+
distance (numpy.ndarray): The distance matrix.
|
66 |
+
match (numpy.ndarray): The matching matrix.
|
67 |
+
match_inv (numpy.ndarray): The inverse matching matrix.
|
68 |
Examples:
|
69 |
Examples should be written in doctest format, and should illustrate how
|
70 |
to use the function.
|
71 |
|
72 |
+
>>> num_generation = 100
|
73 |
+
>>> num_reference = 10
|
74 |
+
>>> seq_len = 100
|
75 |
+
>>> num_features = 10
|
76 |
+
>>> references = np.random.rand(num_reference, seq_len, num_features)
|
77 |
+
>>> predictions = np.random.rand(num_generation, seq_len, num_features)
|
78 |
+
>>> metric = evaluate.load("bowdbeg/matching_series")
|
79 |
+
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000, return_all=True)
|
80 |
>>> print(results)
|
81 |
+
{'precision_distance': 0.1573285013437271, 'recall_distance': 0.15106813609600067, 'mean_distance': 0.1541983187198639, 'index_distance': 0.16858606040477753, 'matching_precision': 0.06, 'matching_recall': 1.0, 'matching_f1': 0.11320756503381972, 'cuc': 0.12428571428571429, 'macro_precision_distance': 0.13803552389144896, 'macro_recall_distance': 0.12179495096206665, 'macro_mean_distance': 0.1299152374267578, 'macro_index_distance': 0.16858604848384856, 'macro_matching_precision': 0.094, 'macro_matching_recall': 0.97, 'macro_matching_f1': 0.17132608782381706, 'macro_cuc': 0.11419285714285714, 'distance': array([[[0.20763363, 0.16514072, 0.18695284, ..., 0.15037987,
|
82 |
+
0.19424284, 0.15943716],
|
83 |
+
[0.17150438, 0.18020014, 0.17024504, ..., 0.18492931,
|
84 |
+
0.18814348, 0.204207 ],
|
85 |
+
[0.1769202 , 0.15609328, 0.17568389, ..., 0.17731658,
|
86 |
+
0.2027854 , 0.13216409],
|
87 |
+
...,
|
88 |
+
[0.1838122 , 0.19475608, 0.14176111, ..., 0.1635111 ,
|
89 |
+
0.1652672 , 0.17145865],
|
90 |
+
[0.16084194, 0.14208058, 0.17567575, ..., 0.15595785,
|
91 |
+
0.16614595, 0.17834347],
|
92 |
+
[0.16388315, 0.14126392, 0.18021484, ..., 0.16791071,
|
93 |
+
0.18403953, 0.16666758]],
|
94 |
+
|
95 |
+
[[0.16838932, 0.18878576, 0.17654441, ..., 0.1747057 ,
|
96 |
+
0.16590554, 0.16901629],
|
97 |
+
[0.16553226, 0.1882645 , 0.17863466, ..., 0.19269662,
|
98 |
+
0.20451452, 0.19941731],
|
99 |
+
[0.16502398, 0.16619626, 0.18069996, ..., 0.16124909,
|
100 |
+
0.18933088, 0.1495165 ],
|
101 |
+
...,
|
102 |
+
[0.15946846, 0.19988221, 0.17965002, ..., 0.12951666,
|
103 |
+
0.2067793 , 0.13811146],
|
104 |
+
[0.16227122, 0.17736743, 0.18641905, ..., 0.15038314,
|
105 |
+
0.20186146, 0.17849396],
|
106 |
+
[0.16410898, 0.18323919, 0.16945514, ..., 0.15783694,
|
107 |
+
0.21556957, 0.17172968]],
|
108 |
+
|
109 |
+
[[0.18094379, 0.1364854 , 0.18436092, ..., 0.187335 ,
|
110 |
+
0.16240291, 0.13713893],
|
111 |
+
[0.18005298, 0.15323727, 0.15788248, ..., 0.19451861,
|
112 |
+
0.12822135, 0.14064161],
|
113 |
+
[0.1564556 , 0.17312287, 0.1856657 , ..., 0.17237219,
|
114 |
+
0.1596888 , 0.16547912],
|
115 |
+
...,
|
116 |
+
[0.15611127, 0.16121496, 0.15533476, ..., 0.16520709,
|
117 |
+
0.1427248 , 0.19455005],
|
118 |
+
[0.17268528, 0.17360437, 0.15962966, ..., 0.18134868,
|
119 |
+
0.15509704, 0.20222983],
|
120 |
+
[0.18704675, 0.15934442, 0.14928888, ..., 0.18904984,
|
121 |
+
0.16192877, 0.18576236]],
|
122 |
+
|
123 |
+
...,
|
124 |
+
|
125 |
+
[[0.13717972, 0.15645625, 0.16123378, ..., 0.19453087,
|
126 |
+
0.14441733, 0.1487963 ],
|
127 |
+
[0.1454296 , 0.13368016, 0.18665504, ..., 0.16096605,
|
128 |
+
0.15130125, 0.18332979],
|
129 |
+
[0.14654924, 0.19097947, 0.19629759, ..., 0.15887487,
|
130 |
+
0.19266474, 0.17430782],
|
131 |
+
...,
|
132 |
+
[0.161704 , 0.16357127, 0.18512094, ..., 0.16441964,
|
133 |
+
0.13961458, 0.17298506],
|
134 |
+
[0.1366249 , 0.15852758, 0.1982772 , ..., 0.18822236,
|
135 |
+
0.16153064, 0.19617072],
|
136 |
+
[0.14570995, 0.15005183, 0.19667573, ..., 0.1856473 ,
|
137 |
+
0.18603194, 0.19179863]],
|
138 |
+
|
139 |
+
[[0.17813908, 0.176182 , 0.16847256, ..., 0.16903524,
|
140 |
+
0.17150073, 0.15068175],
|
141 |
+
[0.17632519, 0.1404587 , 0.16388708, ..., 0.16873878,
|
142 |
+
0.15744762, 0.198475 ],
|
143 |
+
[0.14986345, 0.1517829 , 0.17624639, ..., 0.18365957,
|
144 |
+
0.17399347, 0.15581599],
|
145 |
+
...,
|
146 |
+
[0.16128553, 0.1974935 , 0.13766351, ..., 0.14026196,
|
147 |
+
0.15450196, 0.16110381],
|
148 |
+
[0.16281141, 0.14699166, 0.16935429, ..., 0.1394466 ,
|
149 |
+
0.1717883 , 0.16191883],
|
150 |
+
[0.14886455, 0.1603608 , 0.15172943, ..., 0.12851712,
|
151 |
+
0.19859877, 0.15576601]],
|
152 |
+
|
153 |
+
[[0.20230632, 0.19680001, 0.17143433, ..., 0.18601838,
|
154 |
+
0.15998998, 0.16043548],
|
155 |
+
[0.19753966, 0.19073424, 0.15046756, ..., 0.18833323,
|
156 |
+
0.16755773, 0.20127842],
|
157 |
+
[0.16012056, 0.16638812, 0.16493171, ..., 0.15849902,
|
158 |
+
0.20269662, 0.1857642 ],
|
159 |
+
...,
|
160 |
+
[0.16341361, 0.19168772, 0.16597596, ..., 0.15715535,
|
161 |
+
0.18122095, 0.17266828],
|
162 |
+
[0.1570099 , 0.18294124, 0.16713732, ..., 0.17442709,
|
163 |
+
0.17020254, 0.18804537],
|
164 |
+
[0.16752282, 0.1295177 , 0.18792175, ..., 0.13976808,
|
165 |
+
0.21054329, 0.18118018]]], dtype=float32), 'match': array([4, 7, 3, 9, 4, 0, 7, 5, 4, 7, 9, 7, 7, 5, 7, 0, 0, 7, 4, 3, 3, 2,
|
166 |
+
8, 9, 4, 4, 5, 1, 4, 9, 0, 2, 7, 3, 6, 5, 6, 3, 2, 2, 2, 6, 9, 4,
|
167 |
+
4, 9, 1, 6, 0, 6, 9, 2, 0, 6, 7, 2, 0, 4, 5, 2, 3, 9, 2, 3, 9, 1,
|
168 |
+
6, 4, 8, 9, 7, 4, 6, 5, 5, 6, 9, 5, 6, 2, 9, 4, 9, 3, 2, 9, 9, 7,
|
169 |
+
9, 5, 9, 1, 7, 6, 4, 4, 5, 4, 7, 5]), 'match_inv': array([15, 91, 79, 4, 4, 4, 49, 4, 49, 45]), 'coverages': [0.10000000000000002, 0.16666666666666666, 0.3666666666666667, 0.6333333333333333, 0.8333333333333334, 0.9, 1.0], 'precision_distance_features': [0.1383965164422989, 0.13804036378860474, 0.1388234943151474, 0.1392393559217453, 0.1357768476009369, 0.1364508718252182, 0.14039862155914307, 0.13417008519172668, 0.1368638128042221, 0.14219526946544647], 'recall_distance_features': [0.11730053275823593, 0.12232911586761475, 0.12200610339641571, 0.12571024894714355, 0.12081331014633179, 0.11693283170461655, 0.12660981714725494, 0.12248671054840088, 0.11726576089859009, 0.12649507820606232], 'mean_distance_features': [0.1278485246002674, 0.13018473982810974, 0.13041479885578156, 0.13247480243444443, 0.12829507887363434, 0.12669185176491737, 0.133504219353199, 0.12832839787006378, 0.1270647868514061, 0.1343451738357544], 'index_distance_features': [0.17064405977725983, 0.17019756138324738, 0.17373089492321014, 0.17575454711914062, 0.15942324697971344, 0.1615942418575287, 0.16519878804683685, 0.1714271903038025, 0.17072594165802002, 0.16716401278972626], 'matching_precision_features': [0.1, 0.09, 0.1, 0.1, 0.09, 0.09, 0.1, 0.08, 0.09, 0.1], 'matching_recall_features': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 0.9, 1.0], 'matching_f1_features': [0.18181819851239656, 0.16513763164885095, 0.18181819851239656, 0.18181819851239656, 0.16513763164885095, 0.16513763164885095, 0.18000001639999985, 0.14693879251145342, 0.16363638033057834, 0.18181819851239656], 'cuc_features': [0.11935714285714286, 0.11578571428571431, 0.11814285714285715, 0.12407142857142857, 0.11207142857142856, 0.11821428571428572, 0.10807142857142855, 0.09635714285714285, 0.10700000000000001, 0.12285714285714286], 'coverages_features': [[0.10000000000000002, 0.20000000000000004, 0.26666666666666666, 0.4666666666666666, 0.7666666666666666, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3666666666666667, 0.5666666666666668, 0.6, 0.8333333333333334, 1.0], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.6999999999999998, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.6, 0.7333333333333333, 0.9333333333333332, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5, 0.6666666666666666, 0.7666666666666666, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3333333333333333, 0.5333333333333333, 0.7666666666666666, 0.8333333333333334, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5333333333333333, 0.6999999999999998, 0.7666666666666666, 0.9], [0.10000000000000002, 0.20000000000000004, 0.2333333333333333, 0.4666666666666666, 0.5333333333333333, 0.6333333333333333, 0.9], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.5666666666666667, 0.8000000000000002, 0.9], [0.10000000000000002, 0.16666666666666666, 0.30000000000000004, 0.5666666666666667, 0.7999999999999999, 0.9, 1.0]]}
|
170 |
"""
|
171 |
|
172 |
|
|
|
248 |
cuc_n_calculation: int = 3,
|
249 |
cuc_n_samples: Union[List[int], str] = "auto",
|
250 |
metric: str = "mse",
|
251 |
+
num_processes: int = 1,
|
252 |
+
instance_normalization: bool = False,
|
253 |
return_distance: bool = False,
|
254 |
return_matching: bool = False,
|
255 |
return_each_features: bool = False,
|
256 |
return_coverages: bool = False,
|
257 |
return_all: bool = False,
|
258 |
dtype=np.float32,
|
259 |
+
eps: float = 1e-8,
|
|
|
260 |
):
|
261 |
"""
|
262 |
Compute the scores of the module given the predictions and references
|
|
|
298 |
references=references,
|
299 |
metric=metric,
|
300 |
batch_size=batch_size,
|
301 |
+
num_processes=num_processes,
|
302 |
dtype=dtype,
|
303 |
)
|
304 |
|
|
|
394 |
references: np.ndarray,
|
395 |
metric: str,
|
396 |
batch_size: Optional[int] = None,
|
397 |
+
num_processes: int = 1,
|
398 |
dtype=np.float32,
|
399 |
):
|
400 |
# distance between predictions and references for all example combinations for each features
|
401 |
# shape: (num_generation, num_reference, num_features)
|
402 |
if batch_size is not None:
|
403 |
+
if num_processes > 1:
|
404 |
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
|
405 |
idxs = [
|
406 |
(i, j)
|
|
|
411 |
(predictions[i : i + batch_size, None], references[None, j : j + batch_size], metric, -2)
|
412 |
for i, j in idxs
|
413 |
]
|
414 |
+
with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
|
415 |
results = executor.map(
|
416 |
self._compute_distance,
|
417 |
*zip(*args),
|
|
|
438 |
def _compute_metrics(
|
439 |
self,
|
440 |
distance: np.ndarray,
|
441 |
+
eps: float = 1e-8,
|
442 |
cuc_n_calculation: int = 3,
|
443 |
cuc_n_samples: Union[List[int], str] = "auto",
|
444 |
) -> dict[str, float | list[float]]:
|
|
|
461 |
best_match_inv = np.argmin(distance, axis=0)
|
462 |
recall_distance = distance[best_match_inv, np.arange(len(best_match_inv))].mean().item()
|
463 |
|
|
|
464 |
mean_distance = (precision_distance + recall_distance) / 2
|
465 |
|
466 |
# matching precision, recall and f1
|
|
|
467 |
matching_precision = np.unique(best_match_inv).size / len(best_match)
|
468 |
+
matching_recall = np.unique(best_match).size / len(best_match_inv)
|
469 |
matching_f1 = 2 / (1 / (matching_precision + eps) + 1 / (matching_recall + eps))
|
470 |
|
471 |
# cuc
|
472 |
coverages, cuc = self.compute_cuc(best_match, len(best_match_inv), cuc_n_calculation, cuc_n_samples)
|
473 |
return {
|
474 |
"precision_distance": precision_distance,
|
|
|
475 |
"recall_distance": recall_distance,
|
476 |
"mean_distance": mean_distance,
|
477 |
"index_distance": index_distance,
|