Upload 12 files
Browse files- .gitattributes +2 -0
- app.py +1473 -0
- car_color_classifier.h5 +3 -0
- car_logo_detection.pt +3 -0
- character_detetion.pt +3 -0
- chevrolet_model_final2.keras +3 -0
- direction_best.pt +3 -0
- logo_model_cnn.h5 +3 -0
- nissan_model_final2.keras +3 -0
- plate_detection.pt +3 -0
- requirements.txt +8 -0
- vehicle_detection.pt +3 -0
- vehicules_database.db +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
chevrolet_model_final2.keras filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
nissan_model_final2.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,1473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from tensorflow.keras.models import load_model
|
| 10 |
+
import os
|
| 11 |
+
import tempfile
|
| 12 |
+
#ficher.db
|
| 13 |
+
import sqlite3
|
| 14 |
+
from sqlite3 import Error
|
| 15 |
+
import re # Module pour les expressions régulières
|
| 16 |
+
|
| 17 |
+
# ------------------------------
|
| 18 |
+
# 1. CHARGEMENT DES MODÈLES
|
| 19 |
+
# ------------------------------
|
| 20 |
+
|
| 21 |
+
# Modèle CNN pour reconnaissance des logos
|
| 22 |
+
cnn_logo_model = load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\logo_model_cnn.h5")
|
| 23 |
+
# Chargement automatique des classes depuis le dossier train
|
| 24 |
+
train_dir = r"C:\Users\ADMIN\Downloads\train-20250512T133726Z-1-001\train"
|
| 25 |
+
logo_classes = sorted([d for d in os.listdir(train_dir) if os.path.isdir(os.path.join(train_dir, d))])
|
| 26 |
+
print(f"Classes de logos chargées ({len(logo_classes)}): {logo_classes}")
|
| 27 |
+
# Modèles YOLO
|
| 28 |
+
model_color = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\car_color.pt")
|
| 29 |
+
model_orientation = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\direction_best.pt")
|
| 30 |
+
model_plate_detection = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\plate_detection.pt")
|
| 31 |
+
model_logo_detection = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\car_logo_detection.pt")
|
| 32 |
+
model_characters = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\character_detetion.pt")
|
| 33 |
+
model_vehicle = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\vehicle_detection.pt")
|
| 34 |
+
|
| 35 |
+
# Modèle TrOCR pour reconnaissance de caractères
|
| 36 |
+
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
|
| 37 |
+
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
| 38 |
+
|
| 39 |
+
# Modèles de reconnaissance de modèle par marque
|
| 40 |
+
model_per_brand = {
|
| 41 |
+
'nissan': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\nissan_model_final2.keras"),
|
| 42 |
+
'chevrolet': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\chevrolet_model_final2.keras"),
|
| 43 |
+
'honda': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\mon_model_cnn_honda.h5"),
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
model_labels = {
|
| 47 |
+
'nissan': ['nissan-altima', 'nissan-armada', 'nissan-datsun', 'nissan-maxima', 'nissan-navara', 'nissan-patrol', 'nissan-sunny'],
|
| 48 |
+
'chevrolet': ['chevrolet-aveo', 'chevrolet-impala', 'chevrolet-malibu', 'chevrolet-silverado', 'chevrolet-tahoe', 'chevrolet-traverse'],
|
| 49 |
+
'honda': ['honda-accord', 'honda-odyssey'],
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# ------------------------------
|
| 53 |
+
# 2. DICTIONNAIRES DE RÉFÉRENCE
|
| 54 |
+
# ------------------------------
|
| 55 |
+
|
| 56 |
+
CATEGORIES = {
|
| 57 |
+
'1': "Véhicules de tourisme",
|
| 58 |
+
'2': "Camions",
|
| 59 |
+
'3': "Camionnettes",
|
| 60 |
+
'4': "Autocars et autobus",
|
| 61 |
+
'5': "Tracteurs routiers",
|
| 62 |
+
'6': "Autres tracteurs",
|
| 63 |
+
'7': "Véhicules spéciaux",
|
| 64 |
+
'8': "Remorques et semi-remorques",
|
| 65 |
+
'9': "Motocyclettes"
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
WILAYAS = {
|
| 69 |
+
"01": "Adrar", "02": "Chlef", "03": "Laghouat", "04": "Oum El Bouaghi",
|
| 70 |
+
"05": "Batna", "06": "Béjaïa", "07": "Biskra", "08": "Béchar",
|
| 71 |
+
"09": "Blida", "10": "Bouira", "11": "Tamanrasset", "12": "Tébessa",
|
| 72 |
+
"13": "Tlemcen", "14": "Tiaret", "15": "Tizi Ouzou", "16": "Alger",
|
| 73 |
+
"17": "Djelfa", "18": "Jijel", "19": "Sétif", "20": "Saïda",
|
| 74 |
+
"21": "Skikda", "22": "Sidi Bel Abbès", "23": "Annaba", "24": "Guelma",
|
| 75 |
+
"25": "Constantine", "26": "Médéa", "27": "Mostaganem", "28": "MSila",
|
| 76 |
+
"29": "Mascara", "30": "Ouargla", "31": "Oran", "32": "El Bayadh",
|
| 77 |
+
"33": "Illizi", "34": "Bordj Bou Arreridj", "35": "Boumerdès",
|
| 78 |
+
"36": "El Tarf", "37": "Tindouf", "38": "Tissemsilt", "39": "El Oued",
|
| 79 |
+
"40": "Khenchela", "41": "Souk Ahras", "42": "Tipaza", "43": "Mila",
|
| 80 |
+
"44": "Aïn Defla", "45": "Naâma", "46": "Aïn Témouchent",
|
| 81 |
+
"47": "Ghardaïa", "48": "Relizane",
|
| 82 |
+
"49": "El M'Ghair", "50": "El Menia",
|
| 83 |
+
"51": "Ouled Djellal", "52": "Bordj Badji Mokhtar",
|
| 84 |
+
"53": "Béni Abbès", "54": "Timimoun",
|
| 85 |
+
"55": "Touggourt", "56": "Djanet",
|
| 86 |
+
"57": "In Salah", "58": "In Guezzam"
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
# ------------------------------
|
| 90 |
+
# 3. VARIABLES PARTAGÉES
|
| 91 |
+
# ------------------------------
|
| 92 |
+
|
| 93 |
+
shared_results = {
|
| 94 |
+
"original_image": None,
|
| 95 |
+
"img_rgb": None,
|
| 96 |
+
"img_draw": None,
|
| 97 |
+
"plate_crop_img": None,
|
| 98 |
+
"logo_crop_img": None,
|
| 99 |
+
"plate_with_chars_img": None,
|
| 100 |
+
"trocr_char_list": [],
|
| 101 |
+
"trocr_combined_text": "",
|
| 102 |
+
"classification_result": "",
|
| 103 |
+
"label_color": "",
|
| 104 |
+
"label_orientation": "",
|
| 105 |
+
"vehicle_type": "",
|
| 106 |
+
"vehicle_model": "",
|
| 107 |
+
"vehicle_brand": "",
|
| 108 |
+
"logo_recognition_results": [],
|
| 109 |
+
"current_frame": None,
|
| 110 |
+
"video_path": None,
|
| 111 |
+
"video_processing": False,
|
| 112 |
+
"frame_count": 0,
|
| 113 |
+
"total_frames": 0,
|
| 114 |
+
"original_video_dimensions": None,
|
| 115 |
+
"corrected_orientation": False,
|
| 116 |
+
"vehicle_box": None, # Pour stocker les coordonnées du véhicule détecté
|
| 117 |
+
"vehicle_detected": False,
|
| 118 |
+
"detection_boxes": {
|
| 119 |
+
"plate": None,
|
| 120 |
+
"logo": None,
|
| 121 |
+
"color": None,
|
| 122 |
+
"orientation": None
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
# ------------------------------
|
| 127 |
+
# 4. FONCTIONS UTILITAIRES
|
| 128 |
+
# ------------------------------
|
| 129 |
+
|
| 130 |
+
def save_complete_results(plate_info, color, model, orientation, vehicle_type, brand):
|
| 131 |
+
"""Sauvegarde toutes les informations dans resultats.txt"""
|
| 132 |
+
with open("/content/drive/MyDrive/resultats.txt", "a", encoding="utf-8") as f:
|
| 133 |
+
f.write("\n" + "="*60 + "\n")
|
| 134 |
+
f.write(f"ANALYSE EFFECTUÉE LE : {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}\n")
|
| 135 |
+
f.write("="*60 + "\n\n")
|
| 136 |
+
|
| 137 |
+
# Section plaque d'immatriculation
|
| 138 |
+
f.write("INFORMATIONS PLAQUE:\n")
|
| 139 |
+
f.write("-"*50 + "\n")
|
| 140 |
+
if plate_info:
|
| 141 |
+
f.write(f"Numéro complet: {plate_info.get('matricule_complet', 'N/A')}\n")
|
| 142 |
+
f.write(f"Wilaya: {plate_info.get('wilaya', ('', 'N/A'))[1]} ({plate_info.get('wilaya', ('', ''))[0]})\n")
|
| 143 |
+
f.write(f"Année: {plate_info.get('annee', 'N/A')}\n")
|
| 144 |
+
f.write(f"Catégorie: {plate_info.get('categorie', ('', 'N/A'))[1]} ({plate_info.get('categorie', ('', ''))[0]})\n")
|
| 145 |
+
f.write(f"Série: {plate_info.get('serie', 'N/A')}\n")
|
| 146 |
+
else:
|
| 147 |
+
f.write("Aucune information de plaque disponible\n")
|
| 148 |
+
|
| 149 |
+
# Section caractéristiques véhicule
|
| 150 |
+
f.write("\nCARACTÉRISTIQUES VÉHICULE:\n")
|
| 151 |
+
f.write("-"*50 + "\n")
|
| 152 |
+
f.write(f"Couleur: {color if color else 'Non détectée'}\n")
|
| 153 |
+
f.write(f"Marque: {brand if brand else 'Non détectée'}\n")
|
| 154 |
+
f.write(f"Modèle: {model if model else 'Non détecté'}\n")
|
| 155 |
+
f.write(f"Orientation: {orientation if orientation else 'Non détectée'}\n")
|
| 156 |
+
f.write(f"Type de véhicule: {vehicle_type if vehicle_type else 'Non détecté'}\n")
|
| 157 |
+
f.write("\n" + "="*60 + "\n\n")
|
| 158 |
+
|
| 159 |
+
def classify_plate(text):
|
| 160 |
+
"""Classification des plaques algériennes (10-11 chiffres)"""
|
| 161 |
+
try:
|
| 162 |
+
if not text:
|
| 163 |
+
return None
|
| 164 |
+
|
| 165 |
+
# Nettoyage strict : uniquement les chiffres
|
| 166 |
+
clean_text = ''.join(c for c in text if c.isdigit())
|
| 167 |
+
|
| 168 |
+
# Vérification longueur (10 ou 11 chiffres)
|
| 169 |
+
if len(clean_text) not in {10, 11}:
|
| 170 |
+
return None
|
| 171 |
+
|
| 172 |
+
# Découpage des parties (exemple pour 11 chiffres: 123 456789 01)
|
| 173 |
+
serie = clean_text[:3] # 3 premiers chiffres
|
| 174 |
+
middle = clean_text[3:9] # 6 chiffres centraux
|
| 175 |
+
wilaya_code = clean_text[9:] # 2 derniers chiffres (wilaya)
|
| 176 |
+
|
| 177 |
+
# Vérification wilaya
|
| 178 |
+
wilaya = WILAYAS.get(wilaya_code, ("", "Wilaya inconnue"))
|
| 179 |
+
|
| 180 |
+
# Décodage catégorie (premier chiffre de la partie centrale)
|
| 181 |
+
categorie_code = middle[0]
|
| 182 |
+
annee = middle[1:3] # 2 chiffres pour l'année
|
| 183 |
+
|
| 184 |
+
return {
|
| 185 |
+
'matricule_complet': clean_text,
|
| 186 |
+
'serie': serie,
|
| 187 |
+
'wilaya': (wilaya_code, wilaya[1]),
|
| 188 |
+
'annee': f"20{annee}",
|
| 189 |
+
'categorie': (categorie_code, CATEGORIES.get(categorie_code, ("", "Inconnue"))[1]),
|
| 190 |
+
'is_algerian': True,
|
| 191 |
+
'length': len(clean_text)
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"Erreur classification plaque: {str(e)}")
|
| 196 |
+
return None
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def predict_brand(image):
|
| 200 |
+
"""Prédire la marque de voiture à partir de l'image en utilisant le modèle CNN"""
|
| 201 |
+
try:
|
| 202 |
+
img = Image.fromarray(image).resize((224, 224))
|
| 203 |
+
img_array = np.array(img) / 255.0
|
| 204 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 205 |
+
|
| 206 |
+
predictions = cnn_logo_model.predict(img_array)
|
| 207 |
+
predicted_class = np.argmax(predictions[0])
|
| 208 |
+
confidence = predictions[0][predicted_class]
|
| 209 |
+
|
| 210 |
+
if confidence < 0.5:
|
| 211 |
+
return "Marque non détectée (confiance trop faible)"
|
| 212 |
+
|
| 213 |
+
brand = logo_classes[predicted_class]
|
| 214 |
+
return f"{brand} (confiance: {confidence:.2f})"
|
| 215 |
+
except Exception as e:
|
| 216 |
+
print(f"Erreur lors de la prédiction de la marque: {str(e)}")
|
| 217 |
+
return "Erreur de détection"
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def recognize_logo(cropped_logo):
|
| 221 |
+
"""Reconnaître la marque à partir d'un logo détecté"""
|
| 222 |
+
try:
|
| 223 |
+
if cropped_logo.size == 0:
|
| 224 |
+
return "Logo trop petit pour analyse"
|
| 225 |
+
|
| 226 |
+
resized_logo = cv2.resize(np.array(cropped_logo), (128, 128))
|
| 227 |
+
rgb_logo = cv2.cvtColor(resized_logo, cv2.COLOR_BGR2RGB)
|
| 228 |
+
normalized_logo = rgb_logo / 255.0
|
| 229 |
+
input_logo = np.expand_dims(normalized_logo, axis=0)
|
| 230 |
+
|
| 231 |
+
predictions = cnn_logo_model.predict(input_logo, verbose=0)
|
| 232 |
+
pred_index = np.argmax(predictions[0])
|
| 233 |
+
pred_label = logo_classes[pred_index]
|
| 234 |
+
pred_conf = predictions[0][pred_index]
|
| 235 |
+
|
| 236 |
+
if pred_conf < 0.5:
|
| 237 |
+
return f"Marque incertaine: {pred_label} ({pred_conf:.2f})"
|
| 238 |
+
|
| 239 |
+
return f"{pred_label} (confiance: {pred_conf:.2f})"
|
| 240 |
+
except Exception as e:
|
| 241 |
+
print(f"Erreur reconnaissance logo: {str(e)}")
|
| 242 |
+
return "Erreur d'analyse"
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
#########" recognize modele"
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def recognize_model(brand, logo_crop):
|
| 249 |
+
"""Reconnaître le modèle spécifique d'une voiture à partir de son logo"""
|
| 250 |
+
try:
|
| 251 |
+
if brand.lower() not in model_per_brand:
|
| 252 |
+
return "Modèle non disponible pour cette marque"
|
| 253 |
+
|
| 254 |
+
if logo_crop.size == 0:
|
| 255 |
+
return "Image trop petite pour analyse"
|
| 256 |
+
|
| 257 |
+
model_recognizer = model_per_brand[brand.lower()]
|
| 258 |
+
model_input_height, model_input_width = model_recognizer.input_shape[1:3]
|
| 259 |
+
|
| 260 |
+
resized_model = cv2.resize(np.array(logo_crop), (model_input_width, model_input_height))
|
| 261 |
+
normalized_model = resized_model / 255.0
|
| 262 |
+
input_model = np.expand_dims(normalized_model, axis=0)
|
| 263 |
+
|
| 264 |
+
model_predictions = model_recognizer.predict(input_model)
|
| 265 |
+
model_index = np.argmax(model_predictions[0])
|
| 266 |
+
model_name = model_labels[brand.lower()][model_index]
|
| 267 |
+
|
| 268 |
+
return model_name
|
| 269 |
+
except Exception as e:
|
| 270 |
+
print(f"Erreur reconnaissance modèle: {str(e)}")
|
| 271 |
+
return "Erreur de détection"
|
| 272 |
+
|
| 273 |
+
def draw_detection_boxes(image):
|
| 274 |
+
"""Dessiner toutes les boîtes de détection sur l'image"""
|
| 275 |
+
img_draw = image.copy()
|
| 276 |
+
|
| 277 |
+
# Boîte pour le véhicule (en premier pour qu'elle soit en arrière-plan)
|
| 278 |
+
if shared_results["vehicle_box"]:
|
| 279 |
+
x1, y1, x2, y2 = shared_results["vehicle_box"]
|
| 280 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange pour véhicule
|
| 281 |
+
cv2.putText(img_draw, "VEHICLE", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
|
| 282 |
+
|
| 283 |
+
# Boîte pour la plaque
|
| 284 |
+
if shared_results["detection_boxes"]["plate"]:
|
| 285 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["plate"]
|
| 286 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 255, 0), 2) # Vert pour plaque
|
| 287 |
+
cv2.putText(img_draw, "PLATE", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 288 |
+
|
| 289 |
+
# Boîte pour le logo
|
| 290 |
+
if shared_results["detection_boxes"]["logo"]:
|
| 291 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["logo"]
|
| 292 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2) # Bleu pour logo
|
| 293 |
+
cv2.putText(img_draw, "LOGO", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
| 294 |
+
|
| 295 |
+
# Ajouter le modèle si détecté
|
| 296 |
+
if shared_results["vehicle_model"]:
|
| 297 |
+
model_text = shared_results["vehicle_model"].split("(")[0].strip() if "(" in shared_results["vehicle_model"] else shared_results["vehicle_model"]
|
| 298 |
+
cv2.putText(img_draw, f"Model: {model_text}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
| 299 |
+
|
| 300 |
+
# Boîte pour la couleur
|
| 301 |
+
if shared_results["detection_boxes"]["color"]:
|
| 302 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["color"]
|
| 303 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 0, 255), 2) # Rouge pour couleur
|
| 304 |
+
cv2.putText(img_draw, "COLOR", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
|
| 305 |
+
|
| 306 |
+
# Ajouter la couleur détectée
|
| 307 |
+
if shared_results["label_color"]:
|
| 308 |
+
cv2.putText(img_draw, f"{shared_results['label_color']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
| 309 |
+
|
| 310 |
+
# Boîte pour l'orientation
|
| 311 |
+
if shared_results["detection_boxes"]["orientation"]:
|
| 312 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["orientation"]
|
| 313 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 255, 0), 2) # Cyan pour orientation
|
| 314 |
+
cv2.putText(img_draw, "ORIENTATION", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 0), 2)
|
| 315 |
+
|
| 316 |
+
# Ajouter l'orientation détectée
|
| 317 |
+
if shared_results["label_orientation"]:
|
| 318 |
+
cv2.putText(img_draw, f"{shared_results['label_orientation']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
|
| 319 |
+
|
| 320 |
+
return img_draw
|
| 321 |
+
|
| 322 |
+
# ------------------------------
|
| 323 |
+
# 5. FONCTIONS PRINCIPALES
|
| 324 |
+
# ------------------------------
|
| 325 |
+
|
| 326 |
+
def load_input(input_data):
|
| 327 |
+
"""Charger une image ou une vidéo et préparer le premier frame"""
|
| 328 |
+
if isinstance(input_data, str): # Fichier (vidéo ou image)
|
| 329 |
+
if input_data.lower().endswith(('.png', '.jpg', '.jpeg')):
|
| 330 |
+
# Traitement comme une image
|
| 331 |
+
return load_image(input_data)
|
| 332 |
+
else:
|
| 333 |
+
# Traitement comme une vidéo
|
| 334 |
+
return load_video(input_data)
|
| 335 |
+
else: # Image directe (numpy array)
|
| 336 |
+
return load_image(input_data)
|
| 337 |
+
|
| 338 |
+
def load_image(image_path):
|
| 339 |
+
"""Charger et préparer l'image de base"""
|
| 340 |
+
if isinstance(image_path, str):
|
| 341 |
+
img = cv2.imread(image_path)
|
| 342 |
+
else: # Si c'est déjà un numpy array (cas du fichier uploadé)
|
| 343 |
+
img = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
|
| 344 |
+
|
| 345 |
+
if img is None:
|
| 346 |
+
raise gr.Error("Échec de lecture de l'image")
|
| 347 |
+
|
| 348 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 349 |
+
img_draw = img_rgb.copy()
|
| 350 |
+
|
| 351 |
+
shared_results["original_image"] = img
|
| 352 |
+
shared_results["img_rgb"] = img_rgb
|
| 353 |
+
shared_results["img_draw"] = img_draw
|
| 354 |
+
shared_results["video_processing"] = False
|
| 355 |
+
shared_results["corrected_orientation"] = False
|
| 356 |
+
|
| 357 |
+
# Réinitialiser les boîtes de détection
|
| 358 |
+
shared_results["detection_boxes"] = {
|
| 359 |
+
"plate": None,
|
| 360 |
+
"logo": None,
|
| 361 |
+
"color": None,
|
| 362 |
+
"orientation": None
|
| 363 |
+
}
|
| 364 |
+
|
| 365 |
+
return Image.fromarray(img_rgb)
|
| 366 |
+
|
| 367 |
+
def load_video(video_path):
|
| 368 |
+
"""Charger une vidéo et préparer le premier frame"""
|
| 369 |
+
cap = cv2.VideoCapture(video_path)
|
| 370 |
+
if not cap.isOpened():
|
| 371 |
+
raise gr.Error("Échec de lecture de la vidéo")
|
| 372 |
+
|
| 373 |
+
# Sauvegarder le chemin de la vidéo et les informations
|
| 374 |
+
shared_results["video_path"] = video_path
|
| 375 |
+
shared_results["video_processing"] = True
|
| 376 |
+
shared_results["frame_count"] = 0
|
| 377 |
+
shared_results["total_frames"] = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 378 |
+
|
| 379 |
+
# Lire les dimensions originales
|
| 380 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 381 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 382 |
+
shared_results["original_video_dimensions"] = (width, height)
|
| 383 |
+
|
| 384 |
+
# Lire le premier frame
|
| 385 |
+
success, frame = cap.read()
|
| 386 |
+
cap.release()
|
| 387 |
+
|
| 388 |
+
if not success:
|
| 389 |
+
raise gr.Error("Échec de lecture du premier frame de la vidéo")
|
| 390 |
+
|
| 391 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 392 |
+
img_draw = img_rgb.copy()
|
| 393 |
+
|
| 394 |
+
shared_results["original_image"] = frame
|
| 395 |
+
shared_results["img_rgb"] = img_rgb
|
| 396 |
+
shared_results["img_draw"] = img_draw
|
| 397 |
+
shared_results["current_frame"] = frame
|
| 398 |
+
shared_results["corrected_orientation"] = False
|
| 399 |
+
|
| 400 |
+
# Réinitialiser les boîtes de détection
|
| 401 |
+
shared_results["detection_boxes"] = {
|
| 402 |
+
"plate": None,
|
| 403 |
+
"logo": None,
|
| 404 |
+
"color": None,
|
| 405 |
+
"orientation": None
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
return Image.fromarray(img_rgb)
|
| 409 |
+
|
| 410 |
+
def get_next_video_frame():
|
| 411 |
+
"""Obtenir le frame suivant de la vidéo en cours"""
|
| 412 |
+
if not shared_results["video_processing"] or not shared_results["video_path"]:
|
| 413 |
+
return None
|
| 414 |
+
|
| 415 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
| 416 |
+
if not cap.isOpened():
|
| 417 |
+
return None
|
| 418 |
+
|
| 419 |
+
# Aller au frame suivant
|
| 420 |
+
shared_results["frame_count"] += 1
|
| 421 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
|
| 422 |
+
|
| 423 |
+
success, frame = cap.read()
|
| 424 |
+
cap.release()
|
| 425 |
+
|
| 426 |
+
if not success:
|
| 427 |
+
# Fin de la vidéo, réinitialiser
|
| 428 |
+
shared_results["frame_count"] = 0
|
| 429 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
| 430 |
+
success, frame = cap.read()
|
| 431 |
+
cap.release()
|
| 432 |
+
if not success:
|
| 433 |
+
return None
|
| 434 |
+
|
| 435 |
+
# Conserver les dimensions originales
|
| 436 |
+
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
|
| 437 |
+
|
| 438 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 439 |
+
img_draw = img_rgb.copy()
|
| 440 |
+
|
| 441 |
+
shared_results["original_image"] = frame
|
| 442 |
+
shared_results["img_rgb"] = img_rgb
|
| 443 |
+
shared_results["img_draw"] = img_draw
|
| 444 |
+
shared_results["current_frame"] = frame
|
| 445 |
+
shared_results["corrected_orientation"] = False
|
| 446 |
+
|
| 447 |
+
# Réinitialiser les boîtes de détection
|
| 448 |
+
shared_results["detection_boxes"] = {
|
| 449 |
+
"plate": None,
|
| 450 |
+
"logo": None,
|
| 451 |
+
"color": None,
|
| 452 |
+
"orientation": None
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
return Image.fromarray(img_rgb)
|
| 456 |
+
|
| 457 |
+
# 3. Ajouter une fonction pour détecter les véhicules
|
| 458 |
+
def detect_vehicle():
|
| 459 |
+
"""Détecter le véhicule principal dans l'image"""
|
| 460 |
+
if shared_results["img_rgb"] is None:
|
| 461 |
+
return "Veuillez d'abord charger une image/vidéo", None
|
| 462 |
+
|
| 463 |
+
img_to_process = shared_results["img_rgb"]
|
| 464 |
+
if shared_results.get("corrected_orientation", False):
|
| 465 |
+
height, width = img_to_process.shape[:2]
|
| 466 |
+
if height > width: # Portrait, besoin de rotation
|
| 467 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
| 468 |
+
|
| 469 |
+
results_vehicle = model_vehicle(img_to_process)
|
| 470 |
+
img_with_boxes = shared_results["img_rgb"].copy()
|
| 471 |
+
vehicle_detected = False
|
| 472 |
+
|
| 473 |
+
for r in results_vehicle:
|
| 474 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
| 475 |
+
# Prendre la plus grande détection (supposée être le véhicule principal)
|
| 476 |
+
largest_box = None
|
| 477 |
+
max_area = 0
|
| 478 |
+
for box in r.boxes:
|
| 479 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 480 |
+
area = (x2 - x1) * (y2 - y1)
|
| 481 |
+
if area > max_area:
|
| 482 |
+
max_area = area
|
| 483 |
+
largest_box = (x1, y1, x2, y2)
|
| 484 |
+
|
| 485 |
+
if largest_box:
|
| 486 |
+
x1, y1, x2, y2 = largest_box
|
| 487 |
+
shared_results["vehicle_box"] = largest_box
|
| 488 |
+
shared_results["vehicle_detected"] = True
|
| 489 |
+
vehicle_detected = True
|
| 490 |
+
|
| 491 |
+
# Dessiner le rectangle autour du véhicule
|
| 492 |
+
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange pour véhicule
|
| 493 |
+
cv2.putText(img_with_boxes, "VEHICLE", (x1, y1 - 10),
|
| 494 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
|
| 495 |
+
|
| 496 |
+
shared_results["img_draw"] = img_with_boxes
|
| 497 |
+
|
| 498 |
+
if vehicle_detected:
|
| 499 |
+
return "Véhicule détecté - Vous pouvez maintenant détecter la couleur", Image.fromarray(img_with_boxes)
|
| 500 |
+
else:
|
| 501 |
+
shared_results["vehicle_box"] = None
|
| 502 |
+
shared_results["vehicle_detected"] = False
|
| 503 |
+
return "Aucun véhicule détecté - La détection de couleur sera moins précise", Image.fromarray(img_with_boxes)
|
| 504 |
+
|
| 505 |
+
# 4. Modifier la fonction detect_color() pour utiliser la zone du véhicule si disponible
|
| 506 |
+
def detect_color():
|
| 507 |
+
"""Détecter la couleur du véhicule dans la zone détectée"""
|
| 508 |
+
if shared_results["img_rgb"] is None:
|
| 509 |
+
return "Veuillez d'abord charger une image/vidéo", None
|
| 510 |
+
|
| 511 |
+
img_to_process = shared_results["img_rgb"]
|
| 512 |
+
if shared_results.get("corrected_orientation", False):
|
| 513 |
+
height, width = img_to_process.shape[:2]
|
| 514 |
+
if height > width: # Portrait, besoin de rotation
|
| 515 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
| 516 |
+
|
| 517 |
+
# Si un véhicule a été détecté, utiliser cette zone pour la détection de couleur
|
| 518 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
| 519 |
+
x1, y1, x2, y2 = shared_results["vehicle_box"]
|
| 520 |
+
vehicle_roi = img_to_process[y1:y2, x1:x2]
|
| 521 |
+
results_color = model_color(vehicle_roi)
|
| 522 |
+
else:
|
| 523 |
+
results_color = model_color(img_to_process)
|
| 524 |
+
|
| 525 |
+
img_with_boxes = shared_results["img_draw"].copy() if shared_results["img_draw"] is not None else img_to_process.copy()
|
| 526 |
+
color_detected = False
|
| 527 |
+
|
| 528 |
+
for r in results_color:
|
| 529 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
| 530 |
+
cls = int(r.boxes.cls[0])
|
| 531 |
+
shared_results["label_color"] = r.names[cls]
|
| 532 |
+
|
| 533 |
+
# Si on a utilisé la ROI du véhicule, ajuster les coordonnées
|
| 534 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
| 535 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
| 536 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
| 537 |
+
x1, y1, x2, y2 = map(int, box)
|
| 538 |
+
# Convertir les coordonnées relatives à la ROI en coordonnées absolues
|
| 539 |
+
abs_x1 = vx1 + x1
|
| 540 |
+
abs_y1 = vy1 + y1
|
| 541 |
+
abs_x2 = vx1 + x2
|
| 542 |
+
abs_y2 = vy1 + y2
|
| 543 |
+
shared_results["detection_boxes"]["color"] = (abs_x1, abs_y1, abs_x2, abs_y2)
|
| 544 |
+
else:
|
| 545 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
| 546 |
+
x1, y1, x2, y2 = map(int, box)
|
| 547 |
+
shared_results["detection_boxes"]["color"] = (x1, y1, x2, y2)
|
| 548 |
+
|
| 549 |
+
color_detected = True
|
| 550 |
+
|
| 551 |
+
# Mettre à jour l'image avec toutes les détections
|
| 552 |
+
img_with_boxes = draw_detection_boxes(img_with_boxes)
|
| 553 |
+
shared_results["img_draw"] = img_with_boxes
|
| 554 |
+
|
| 555 |
+
if color_detected:
|
| 556 |
+
return f"Couleur: {shared_results['label_color']}", Image.fromarray(img_with_boxes)
|
| 557 |
+
else:
|
| 558 |
+
return "Couleur non détectée", Image.fromarray(img_with_boxes)
|
| 559 |
+
|
| 560 |
+
def detect_orientation():
|
| 561 |
+
"""Détecter l'orientation du véhicule"""
|
| 562 |
+
if shared_results["img_rgb"] is None:
|
| 563 |
+
return "Veuillez d'abord charger une image/vidéo"
|
| 564 |
+
|
| 565 |
+
# S'assurer que l'image est dans le bon sens
|
| 566 |
+
img_to_process = shared_results["img_rgb"]
|
| 567 |
+
if shared_results["video_processing"]:
|
| 568 |
+
# Pour les vidéos, vérifier l'orientation et corriger si nécessaire
|
| 569 |
+
height, width = img_to_process.shape[:2]
|
| 570 |
+
if height > width: # Portrait, besoin de rotation
|
| 571 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
| 572 |
+
shared_results["corrected_orientation"] = True
|
| 573 |
+
|
| 574 |
+
results_orientation = model_orientation(img_to_process)
|
| 575 |
+
for r in results_orientation:
|
| 576 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
| 577 |
+
cls = int(r.boxes.cls[0])
|
| 578 |
+
shared_results["label_orientation"] = r.names[cls]
|
| 579 |
+
|
| 580 |
+
# Enregistrer la boîte de détection
|
| 581 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
| 582 |
+
x1, y1, x2, y2 = map(int, box)
|
| 583 |
+
shared_results["detection_boxes"]["orientation"] = (x1, y1, x2, y2)
|
| 584 |
+
|
| 585 |
+
# Mettre à jour l'image avec toutes les détections
|
| 586 |
+
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
|
| 587 |
+
shared_results["img_draw"] = img_with_boxes
|
| 588 |
+
|
| 589 |
+
return f"Orientation: {shared_results['label_orientation']}" if shared_results['label_orientation'] else "Orientation non détectée", Image.fromarray(img_with_boxes)
|
| 590 |
+
|
| 591 |
+
def detect_logo_and_model():
|
| 592 |
+
"""Détecter et reconnaître le logo et le modèle du véhicule"""
|
| 593 |
+
if shared_results["img_rgb"] is None:
|
| 594 |
+
return "Veuillez d'abord charger une image", None, None, None, None
|
| 595 |
+
|
| 596 |
+
shared_results["logo_recognition_results"] = []
|
| 597 |
+
img_draw = shared_results["img_draw"].copy()
|
| 598 |
+
detected_model = "Modèle non détecté"
|
| 599 |
+
|
| 600 |
+
results_logo = model_logo_detection(shared_results["img_rgb"])
|
| 601 |
+
if results_logo and results_logo[0].boxes:
|
| 602 |
+
for box in results_logo[0].boxes:
|
| 603 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 604 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
| 605 |
+
|
| 606 |
+
logo_crop = shared_results["img_rgb"][y1:y2, x1:x2]
|
| 607 |
+
shared_results["logo_crop_img"] = Image.fromarray(logo_crop)
|
| 608 |
+
|
| 609 |
+
# Reconnaissance du logo (marque)
|
| 610 |
+
logo_recognition = recognize_logo(shared_results["logo_crop_img"])
|
| 611 |
+
shared_results["logo_recognition_results"].append(logo_recognition)
|
| 612 |
+
|
| 613 |
+
cv2.putText(img_draw, "LOGO", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255,0,0), 2)
|
| 614 |
+
|
| 615 |
+
if not shared_results["vehicle_brand"] or "confiance" not in shared_results["vehicle_brand"]:
|
| 616 |
+
shared_results["vehicle_brand"] = logo_recognition
|
| 617 |
+
|
| 618 |
+
# Reconnaissance du modèle spécifique si la marque est reconnue
|
| 619 |
+
brand = None
|
| 620 |
+
if "(" in logo_recognition: # Format: "Marque (confiance: 0.xx)"
|
| 621 |
+
brand = logo_recognition.split("(")[0].strip().lower()
|
| 622 |
+
else:
|
| 623 |
+
brand = logo_recognition.lower()
|
| 624 |
+
|
| 625 |
+
if brand in model_per_brand:
|
| 626 |
+
try:
|
| 627 |
+
detected_model = recognize_model(brand, shared_results["logo_crop_img"])
|
| 628 |
+
|
| 629 |
+
# Mise à jour du texte sur l'image
|
| 630 |
+
cv2.putText(img_draw, f"Modèle: {detected_model}", (x1, y2 + 20),
|
| 631 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
|
| 632 |
+
except Exception as e:
|
| 633 |
+
print(f"Erreur reconnaissance modèle: {str(e)}")
|
| 634 |
+
detected_model = "Erreur reconnaissance modèle"
|
| 635 |
+
|
| 636 |
+
shared_results["img_draw"] = img_draw
|
| 637 |
+
shared_results["vehicle_model"] = detected_model
|
| 638 |
+
|
| 639 |
+
# Détection globale de la marque si la détection du logo a échoué
|
| 640 |
+
if not shared_results["vehicle_brand"] or "incertaine" in shared_results["vehicle_brand"] or "Erreur" in shared_results["vehicle_brand"]:
|
| 641 |
+
global_brand = predict_brand(shared_results["img_rgb"])
|
| 642 |
+
if global_brand and "non détectée" not in global_brand:
|
| 643 |
+
shared_results["vehicle_brand"] = global_brand
|
| 644 |
+
|
| 645 |
+
logo_results_text = " | ".join(shared_results["logo_recognition_results"]) if shared_results["logo_recognition_results"] else "Aucun logo reconnu"
|
| 646 |
+
|
| 647 |
+
return (
|
| 648 |
+
f"Marque: {shared_results['vehicle_brand']}" if shared_results['vehicle_brand'] else "Marque non détectée",
|
| 649 |
+
f"Modèle: {shared_results['vehicle_model']}" if shared_results['vehicle_model'] else "Modèle non détecté",
|
| 650 |
+
f"Reconnaissance logo: {logo_results_text}",
|
| 651 |
+
Image.fromarray(img_draw),
|
| 652 |
+
shared_results["logo_crop_img"]
|
| 653 |
+
)
|
| 654 |
+
|
| 655 |
+
def detect_plate():
|
| 656 |
+
"""Détecter la plaque d'immatriculation et reconnaître les caractères"""
|
| 657 |
+
if shared_results["img_rgb"] is None:
|
| 658 |
+
return "Veuillez d'abord charger une image/vidéo", None, None, None
|
| 659 |
+
|
| 660 |
+
shared_results["trocr_char_list"] = []
|
| 661 |
+
shared_results["trocr_combined_text"] = ""
|
| 662 |
+
img_to_process = shared_results["img_rgb"]
|
| 663 |
+
|
| 664 |
+
# Utiliser l'image corrigée si nécessaire
|
| 665 |
+
if shared_results.get("corrected_orientation", False):
|
| 666 |
+
height, width = img_to_process.shape[:2]
|
| 667 |
+
if height > width: # Portrait, besoin de rotation
|
| 668 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
| 669 |
+
|
| 670 |
+
# Si un véhicule a été détecté, utiliser cette zone pour la détection
|
| 671 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
| 672 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
| 673 |
+
roi = img_to_process[vy1:vy2, vx1:vx2]
|
| 674 |
+
results_plate = model_plate_detection(roi)
|
| 675 |
+
else:
|
| 676 |
+
results_plate = model_plate_detection(img_to_process)
|
| 677 |
+
|
| 678 |
+
if results_plate and results_plate[0].boxes:
|
| 679 |
+
for box in results_plate[0].boxes:
|
| 680 |
+
# Ajuster les coordonnées si on a utilisé la ROI du véhicule
|
| 681 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
| 682 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
| 683 |
+
rx1, ry1, rx2, ry2 = map(int, box.xyxy[0])
|
| 684 |
+
# Convertir en coordonnées absolues
|
| 685 |
+
x1 = vx1 + rx1
|
| 686 |
+
y1 = vy1 + ry1
|
| 687 |
+
x2 = vx1 + rx2
|
| 688 |
+
y2 = vy1 + ry2
|
| 689 |
+
else:
|
| 690 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 691 |
+
|
| 692 |
+
shared_results["detection_boxes"]["plate"] = (x1, y1, x2, y2)
|
| 693 |
+
plate_crop = img_to_process[y1:y2, x1:x2]
|
| 694 |
+
shared_results["plate_crop_img"] = Image.fromarray(plate_crop)
|
| 695 |
+
plate_for_char_draw = plate_crop.copy()
|
| 696 |
+
|
| 697 |
+
# Détection des caractères
|
| 698 |
+
results_chars = model_characters(plate_crop)
|
| 699 |
+
char_boxes = []
|
| 700 |
+
for r in results_chars:
|
| 701 |
+
if r.boxes:
|
| 702 |
+
for box in r.boxes:
|
| 703 |
+
x1c, y1c, x2c, y2c = map(int, box.xyxy[0])
|
| 704 |
+
char_boxes.append(((x1c, y1c, x2c, y2c), x1c))
|
| 705 |
+
|
| 706 |
+
char_boxes.sort(key=lambda x: x[1])
|
| 707 |
+
|
| 708 |
+
for i, (coords, _) in enumerate(char_boxes):
|
| 709 |
+
x1c, y1c, x2c, y2c = coords
|
| 710 |
+
char_crop = plate_crop[y1c:y2c, x1c:x2c]
|
| 711 |
+
char_pil = Image.fromarray(char_crop).convert("RGB")
|
| 712 |
+
|
| 713 |
+
try:
|
| 714 |
+
inputs = trocr_processor(images=char_pil, return_tensors="pt").pixel_values
|
| 715 |
+
generated_ids = trocr_model.generate(inputs)
|
| 716 |
+
predicted_char = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 717 |
+
shared_results["trocr_char_list"].append(predicted_char)
|
| 718 |
+
except Exception as e:
|
| 719 |
+
shared_results["trocr_char_list"].append("?")
|
| 720 |
+
|
| 721 |
+
cv2.rectangle(plate_for_char_draw, (x1c, y1c), (x2c, y2c), (255, 0, 255), 1)
|
| 722 |
+
cv2.putText(plate_for_char_draw, predicted_char, (x1c, y1c - 5),
|
| 723 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 1)
|
| 724 |
+
|
| 725 |
+
shared_results["plate_with_chars_img"] = Image.fromarray(plate_for_char_draw)
|
| 726 |
+
shared_results["trocr_combined_text"] = ''.join(shared_results["trocr_char_list"])
|
| 727 |
+
break
|
| 728 |
+
|
| 729 |
+
# Mettre à jour l'image avec toutes les détections
|
| 730 |
+
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
|
| 731 |
+
shared_results["img_draw"] = img_with_boxes
|
| 732 |
+
|
| 733 |
+
return (
|
| 734 |
+
Image.fromarray(img_with_boxes),
|
| 735 |
+
shared_results["plate_crop_img"],
|
| 736 |
+
shared_results["plate_with_chars_img"],
|
| 737 |
+
shared_results["trocr_char_list"]
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
def is_empty_plate(cropped_plate_image):
|
| 741 |
+
"""Détecte si la plaque est visuellement vide (espace blanc)"""
|
| 742 |
+
if cropped_plate_image is None:
|
| 743 |
+
return True
|
| 744 |
+
|
| 745 |
+
# Convertir en numpy array si c'est une image PIL
|
| 746 |
+
if isinstance(cropped_plate_image, Image.Image):
|
| 747 |
+
plate_img = np.array(cropped_plate_image)
|
| 748 |
+
else:
|
| 749 |
+
plate_img = cropped_plate_image
|
| 750 |
+
|
| 751 |
+
# Convertir en niveaux de gris
|
| 752 |
+
gray = cv2.cvtColor(plate_img, cv2.COLOR_RGB2GRAY)
|
| 753 |
+
|
| 754 |
+
# Seuillage pour détecter les zones non blanches
|
| 755 |
+
_, thresholded = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
|
| 756 |
+
|
| 757 |
+
# Compter les pixels non blancs (potentiels caractères)
|
| 758 |
+
non_white_pixels = cv2.countNonZero(thresholded)
|
| 759 |
+
|
| 760 |
+
# Si moins de 1% de pixels non blancs, considérer comme vide
|
| 761 |
+
total_pixels = gray.shape[0] * gray.shape[1]
|
| 762 |
+
return non_white_pixels < (0.01 * total_pixels)
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
def classify_plate_number():
|
| 766 |
+
"""Fonction complète de classification des plaques algériennes avec gestion des cas spéciaux"""
|
| 767 |
+
# 1. Vérification initiale - Aucune détection de plaque
|
| 768 |
+
if not shared_results.get("plate_crop_img"):
|
| 769 |
+
return (
|
| 770 |
+
"Aucune plaque détectée",
|
| 771 |
+
"Type: Non déterminé",
|
| 772 |
+
"❌ Aucune détection",
|
| 773 |
+
"Action: Ajuster l'angle de vue ou la distance"
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
# 2. Cas spécial - Plaque détectée mais visuellement vide (espace blanc)
|
| 777 |
+
plate_img = shared_results["plate_crop_img"]
|
| 778 |
+
if isinstance(plate_img, Image.Image):
|
| 779 |
+
plate_img = np.array(plate_img)
|
| 780 |
+
|
| 781 |
+
gray = cv2.cvtColor(plate_img, cv2.COLOR_RGB2GRAY)
|
| 782 |
+
_, thresholded = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
|
| 783 |
+
non_white_pixels = cv2.countNonZero(thresholded)
|
| 784 |
+
|
| 785 |
+
if non_white_pixels < (0.01 * gray.size):
|
| 786 |
+
return (
|
| 787 |
+
"Zone de plaque détectée mais vide",
|
| 788 |
+
"Type: Non déterminé",
|
| 789 |
+
"⚠️ Plaque blanche détectée",
|
| 790 |
+
"Action: Vérifier si la plaque est masquée"
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
# 3. Cas où du texte est détecté
|
| 794 |
+
if not shared_results.get("trocr_combined_text"):
|
| 795 |
+
return (
|
| 796 |
+
"Plaque détectée mais aucun caractère reconnu",
|
| 797 |
+
"Type: Non déterminé",
|
| 798 |
+
"⚠️ Plaque illisible",
|
| 799 |
+
"Action: Améliorer la qualité d'image"
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
plate_text = shared_results["trocr_combined_text"].strip()
|
| 803 |
+
|
| 804 |
+
# 4. Vérification présence de lettres (rejet immédiat)
|
| 805 |
+
if any(c.isalpha() for c in plate_text):
|
| 806 |
+
return (
|
| 807 |
+
f"Texte rejeté: {plate_text}",
|
| 808 |
+
"Type: Non déterminé",
|
| 809 |
+
"❌ NON ALGÉRIEN (lettres détectées)",
|
| 810 |
+
"Action: Contrôle immédiat requis"
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
# 5. Extraction des chiffres uniquement
|
| 814 |
+
digits = ''.join(c for c in plate_text if c.isdigit())
|
| 815 |
+
|
| 816 |
+
# 6. Vérification longueur (10-11 chiffres)
|
| 817 |
+
if len(digits) not in {10, 11}:
|
| 818 |
+
return (
|
| 819 |
+
f"Texte rejeté: {plate_text} ({len(digits)} chiffres)",
|
| 820 |
+
"Type: Non déterminé",
|
| 821 |
+
f"❌ NON ALGÉRIEN (format invalide)",
|
| 822 |
+
"Action: Contrôle requis"
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
# 7. Classification algérienne standard
|
| 826 |
+
try:
|
| 827 |
+
# Découpage des parties (ex: 123 456789 01)
|
| 828 |
+
serie = digits[:3]
|
| 829 |
+
middle = digits[3:9]
|
| 830 |
+
wilaya_code = digits[9:]
|
| 831 |
+
|
| 832 |
+
# Validation wilaya
|
| 833 |
+
wilaya = WILAYAS.get(wilaya_code, ("", "Wilaya inconnue"))
|
| 834 |
+
if wilaya_code not in WILAYAS:
|
| 835 |
+
return (
|
| 836 |
+
f"Plaque: {digits}",
|
| 837 |
+
"Type: Non déterminé",
|
| 838 |
+
f"❌ Wilaya {wilaya_code} inconnue",
|
| 839 |
+
"Action: Vérification manuelle"
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
# Décodage catégorie et année
|
| 843 |
+
categorie_code = middle[0]
|
| 844 |
+
annee = f"20{middle[1:3]}"
|
| 845 |
+
categorie = CATEGORIES.get(categorie_code, ("", "Inconnue"))
|
| 846 |
+
|
| 847 |
+
# Construction du résultat
|
| 848 |
+
result = {
|
| 849 |
+
'matricule_complet': digits,
|
| 850 |
+
'serie': serie,
|
| 851 |
+
'wilaya': (wilaya_code, wilaya[1]),
|
| 852 |
+
'annee': annee,
|
| 853 |
+
'categorie': (categorie_code, categorie[1]),
|
| 854 |
+
'length': len(digits)
|
| 855 |
+
}
|
| 856 |
+
|
| 857 |
+
shared_results["classified_plate"] = result
|
| 858 |
+
shared_results["vehicle_type"] = categorie[1]
|
| 859 |
+
|
| 860 |
+
return (
|
| 861 |
+
f"Plaque: {digits}\n"
|
| 862 |
+
f"Wilaya: {wilaya[1]} ({wilaya_code})\n"
|
| 863 |
+
f"Année: {annee}\n"
|
| 864 |
+
f"Catégorie: {categorie[1]}\n"
|
| 865 |
+
f"Série: {serie}",
|
| 866 |
+
f"Type: {categorie[1]}",
|
| 867 |
+
"✅ PLAQUE ALGÉRIENNE VALIDE",
|
| 868 |
+
"Action: Vérification standard"
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
except Exception as e:
|
| 872 |
+
print(f"Erreur classification: {str(e)}")
|
| 873 |
+
return (
|
| 874 |
+
f"Erreur d'analyse: {plate_text}",
|
| 875 |
+
"Type: Non déterminé",
|
| 876 |
+
"❌ Erreur de traitement",
|
| 877 |
+
"Action: Contrôle technique requis"
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
def next_frame():
|
| 881 |
+
"""Passer au frame suivant dans une vidéo"""
|
| 882 |
+
if not shared_results["video_processing"] or not shared_results["video_path"]:
|
| 883 |
+
return (
|
| 884 |
+
"Aucune vidéo en cours de traitement",
|
| 885 |
+
None, # original_image
|
| 886 |
+
None, # status_output
|
| 887 |
+
None, # color_output
|
| 888 |
+
None, # orientation_output
|
| 889 |
+
None, # logo_output
|
| 890 |
+
None, # model_output
|
| 891 |
+
None, # plate_classification
|
| 892 |
+
None # vehicle_type_output
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
| 896 |
+
if not cap.isOpened():
|
| 897 |
+
return (
|
| 898 |
+
"Erreur de lecture de la vidéo",
|
| 899 |
+
None, None, None, None, None, None, None, None
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
# Aller au frame suivant
|
| 903 |
+
shared_results["frame_count"] += 1
|
| 904 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
|
| 905 |
+
success, frame = cap.read()
|
| 906 |
+
cap.release()
|
| 907 |
+
|
| 908 |
+
if not success:
|
| 909 |
+
# Fin de la vidéo atteinte, revenir au début
|
| 910 |
+
shared_results["frame_count"] = 0
|
| 911 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
| 912 |
+
success, frame = cap.read()
|
| 913 |
+
cap.release()
|
| 914 |
+
if not success:
|
| 915 |
+
return (
|
| 916 |
+
"Erreur de lecture du premier frame",
|
| 917 |
+
None, None, None, None, None, None, None, None
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
# Conserver les dimensions originales
|
| 921 |
+
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
|
| 922 |
+
|
| 923 |
+
# Convertir et préparer l'image
|
| 924 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 925 |
+
img_draw = img_rgb.copy()
|
| 926 |
+
|
| 927 |
+
# Mettre à jour les résultats partagés
|
| 928 |
+
shared_results.update({
|
| 929 |
+
"original_image": frame,
|
| 930 |
+
"img_rgb": img_rgb,
|
| 931 |
+
"img_draw": img_draw,
|
| 932 |
+
"current_frame": frame,
|
| 933 |
+
"corrected_orientation": False,
|
| 934 |
+
"label_color": "",
|
| 935 |
+
"label_orientation": "",
|
| 936 |
+
"vehicle_type": "",
|
| 937 |
+
"vehicle_model": "",
|
| 938 |
+
"vehicle_brand": "",
|
| 939 |
+
"logo_recognition_results": [],
|
| 940 |
+
"trocr_char_list": [],
|
| 941 |
+
"trocr_combined_text": "",
|
| 942 |
+
"classification_result": "",
|
| 943 |
+
"vehicle_box": None,
|
| 944 |
+
"vehicle_detected": False,
|
| 945 |
+
"detection_boxes": {
|
| 946 |
+
"plate": None,
|
| 947 |
+
"logo": None,
|
| 948 |
+
"color": None,
|
| 949 |
+
"orientation": None
|
| 950 |
+
},
|
| 951 |
+
"plate_crop_img": None,
|
| 952 |
+
"logo_crop_img": None,
|
| 953 |
+
"plate_with_chars_img": None
|
| 954 |
+
})
|
| 955 |
+
|
| 956 |
+
# Retourner les résultats
|
| 957 |
+
return (
|
| 958 |
+
Image.fromarray(img_rgb), # original_image
|
| 959 |
+
f"Frame {shared_results['frame_count']}/{shared_results['total_frames']} - Prêt pour analyse", # status_output
|
| 960 |
+
None, # color_output (réinitialisé)
|
| 961 |
+
None, # orientation_output (réinitialisé)
|
| 962 |
+
None, # logo_output (réinitialisé)
|
| 963 |
+
None, # model_output (réinitialisé)
|
| 964 |
+
None, # plate_classification (réinitialisé)
|
| 965 |
+
None # vehicle_type_output (réinitialisé)
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
# ------------------------------
|
| 970 |
+
# 7. GESTION BASE DE DONNÉES VÉHICULES
|
| 971 |
+
# ------------------------------
|
| 972 |
+
|
| 973 |
+
DB_PATH = "/content/drive/MyDrive/vehicules_database.db"
|
| 974 |
+
TIME_PATTERN = re.compile(r'^\d{2}:\d{2}-\d{2}:\d{2}$')
|
| 975 |
+
|
| 976 |
+
def create_connection():
|
| 977 |
+
"""Créer une connexion à la base SQLite"""
|
| 978 |
+
conn = None
|
| 979 |
+
try:
|
| 980 |
+
conn = sqlite3.connect(DB_PATH)
|
| 981 |
+
return conn
|
| 982 |
+
except Error as e:
|
| 983 |
+
print(f"Erreur de connexion à SQLite: {e}")
|
| 984 |
+
return conn
|
| 985 |
+
|
| 986 |
+
def init_database():
|
| 987 |
+
"""Initialiser la base de données SQLite"""
|
| 988 |
+
conn = create_connection()
|
| 989 |
+
if conn is not None:
|
| 990 |
+
try:
|
| 991 |
+
cursor = conn.cursor()
|
| 992 |
+
cursor.execute("""
|
| 993 |
+
CREATE TABLE IF NOT EXISTS vehicules (
|
| 994 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 995 |
+
plaque TEXT NOT NULL UNIQUE,
|
| 996 |
+
marque TEXT,
|
| 997 |
+
modele TEXT,
|
| 998 |
+
couleur TEXT,
|
| 999 |
+
statut TEXT,
|
| 1000 |
+
plage_horaire TEXT,
|
| 1001 |
+
date_enregistrement TEXT
|
| 1002 |
+
)
|
| 1003 |
+
""")
|
| 1004 |
+
conn.commit()
|
| 1005 |
+
except Error as e:
|
| 1006 |
+
print(f"Erreur création table: {e}")
|
| 1007 |
+
finally:
|
| 1008 |
+
conn.close()
|
| 1009 |
+
|
| 1010 |
+
def check_vehicle(plate_text):
|
| 1011 |
+
"""Vérifier si un véhicule existe dans la base"""
|
| 1012 |
+
init_database()
|
| 1013 |
+
conn = create_connection()
|
| 1014 |
+
if conn is not None:
|
| 1015 |
+
try:
|
| 1016 |
+
cursor = conn.cursor()
|
| 1017 |
+
cursor.execute("SELECT statut, plage_horaire FROM vehicules WHERE plaque = ?", (plate_text,))
|
| 1018 |
+
result = cursor.fetchone()
|
| 1019 |
+
|
| 1020 |
+
if result:
|
| 1021 |
+
return True, f"Statut: {result[0]} | Accès: {result[1]}"
|
| 1022 |
+
return False, "Véhicule non enregistré"
|
| 1023 |
+
except Error as e:
|
| 1024 |
+
print(f"Erreur lecture base: {e}")
|
| 1025 |
+
return False, "Erreur base de données"
|
| 1026 |
+
finally:
|
| 1027 |
+
conn.close()
|
| 1028 |
+
return False, "Erreur de connexion"
|
| 1029 |
+
|
| 1030 |
+
def save_vehicle(plate_info, color, model, brand, status, time_range):
|
| 1031 |
+
"""Enregistrer un nouveau véhicule"""
|
| 1032 |
+
init_database()
|
| 1033 |
+
conn = create_connection()
|
| 1034 |
+
if conn is not None:
|
| 1035 |
+
try:
|
| 1036 |
+
# Nettoyer les données
|
| 1037 |
+
plate_number = str(plate_info['matricule_complet']).strip()
|
| 1038 |
+
clean_brand = brand.split('(')[0].strip() if '(' in brand else brand
|
| 1039 |
+
clean_model = model.split('(')[0].strip() if '(' in model else model
|
| 1040 |
+
|
| 1041 |
+
cursor = conn.cursor()
|
| 1042 |
+
|
| 1043 |
+
# Vérifier si le véhicule existe déjà
|
| 1044 |
+
cursor.execute("SELECT 1 FROM vehicules WHERE plaque = ?", (plate_number,))
|
| 1045 |
+
if cursor.fetchone():
|
| 1046 |
+
return False, "Véhicule déjà existant"
|
| 1047 |
+
|
| 1048 |
+
# Insérer le nouveau véhicule
|
| 1049 |
+
cursor.execute("""
|
| 1050 |
+
INSERT INTO vehicules (plaque, marque, modele, couleur, statut, plage_horaire, date_enregistrement)
|
| 1051 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
| 1052 |
+
""", (
|
| 1053 |
+
plate_number,
|
| 1054 |
+
clean_brand,
|
| 1055 |
+
clean_model,
|
| 1056 |
+
color,
|
| 1057 |
+
status,
|
| 1058 |
+
time_range,
|
| 1059 |
+
datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 1060 |
+
))
|
| 1061 |
+
|
| 1062 |
+
conn.commit()
|
| 1063 |
+
return True, "Enregistrement réussi"
|
| 1064 |
+
except Error as e:
|
| 1065 |
+
return False, f"Erreur enregistrement: {e}"
|
| 1066 |
+
finally:
|
| 1067 |
+
conn.close()
|
| 1068 |
+
return False, "Erreur de connexion"
|
| 1069 |
+
|
| 1070 |
+
def is_access_allowed(plate_text):
|
| 1071 |
+
"""Vérifier si l'accès est autorisé à l'heure actuelle"""
|
| 1072 |
+
conn = create_connection()
|
| 1073 |
+
if conn is not None:
|
| 1074 |
+
try:
|
| 1075 |
+
cursor = conn.cursor()
|
| 1076 |
+
cursor.execute("SELECT statut, plage_horaire FROM vehicules WHERE plaque = ?", (plate_text,))
|
| 1077 |
+
vehicle = cursor.fetchone()
|
| 1078 |
+
|
| 1079 |
+
if not vehicle:
|
| 1080 |
+
return False
|
| 1081 |
+
|
| 1082 |
+
if vehicle[0] == "Non Autorisé":
|
| 1083 |
+
return False
|
| 1084 |
+
|
| 1085 |
+
if vehicle[1] == "24/24":
|
| 1086 |
+
return True
|
| 1087 |
+
|
| 1088 |
+
current_time = datetime.now().time()
|
| 1089 |
+
start_str, end_str = vehicle[1].split('-')
|
| 1090 |
+
start = time(*map(int, start_str.split(':')))
|
| 1091 |
+
end = time(*map(int, end_str.split(':')))
|
| 1092 |
+
|
| 1093 |
+
return start <= current_time <= end
|
| 1094 |
+
except Error as e:
|
| 1095 |
+
print(f"Erreur vérification accès: {e}")
|
| 1096 |
+
return False
|
| 1097 |
+
finally:
|
| 1098 |
+
conn.close()
|
| 1099 |
+
return False
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
# ------------------------------
|
| 1103 |
+
# 6. INTERFACE GRADIO
|
| 1104 |
+
# ------------------------------
|
| 1105 |
+
|
| 1106 |
+
with gr.Blocks(title="🚗 Système de Reconnaissance de Véhicules Algériens") as demo:
|
| 1107 |
+
gr.Markdown("# 🚗 Système de Reconnaissance de Véhicules Algériens")
|
| 1108 |
+
gr.Markdown("Détection de plaque d'immatriculation, logo, couleur, modèle et autres caractéristiques du véhicule")
|
| 1109 |
+
|
| 1110 |
+
with gr.Row():
|
| 1111 |
+
with gr.Column():
|
| 1112 |
+
# Section de chargement améliorée
|
| 1113 |
+
input_type = gr.Radio(["Image", "Vidéo"], label="Type d'entrée", value="Image", interactive=True)
|
| 1114 |
+
file_input = gr.File(label="Déposer le fichier ici - ou - Cliquez pour télécharger",
|
| 1115 |
+
file_types=["image", "video"])
|
| 1116 |
+
load_btn = gr.Button("Charger le fichier")
|
| 1117 |
+
|
| 1118 |
+
###########################""
|
| 1119 |
+
# Nouveaux éléments pour la sélection de frame
|
| 1120 |
+
frame_gallery = gr.Gallery(visible=False, label="Sélectionnez un frame", columns=4)
|
| 1121 |
+
frame_slider = gr.Slider(visible=False, interactive=True, label="Frame sélectionné")
|
| 1122 |
+
load_frame_btn = gr.Button(visible=False, value="Charger le frame sélectionné")
|
| 1123 |
+
#########################
|
| 1124 |
+
|
| 1125 |
+
# Détections
|
| 1126 |
+
with gr.Row():
|
| 1127 |
+
detect_vehicle_btn = gr.Button("Détection de véhicule")
|
| 1128 |
+
detect_color_btn = gr.Button("Détection de couleur")
|
| 1129 |
+
|
| 1130 |
+
with gr.Row():
|
| 1131 |
+
detect_orientation_btn = gr.Button("Détection de l'orientation")
|
| 1132 |
+
detect_logo_btn = gr.Button("Logo et modèle")
|
| 1133 |
+
|
| 1134 |
+
with gr.Row():
|
| 1135 |
+
detect_plate_btn = gr.Button("Détection de plaque")
|
| 1136 |
+
classify_plate_btn = gr.Button("Classifier plaque")
|
| 1137 |
+
|
| 1138 |
+
with gr.Row():
|
| 1139 |
+
next_frame_btn = gr.Button("Frame suivant", visible=False)
|
| 1140 |
+
|
| 1141 |
+
# Nouvelle position pour la gestion d'accès (déplacée ici)
|
| 1142 |
+
with gr.Tab("Gestion Accès"):
|
| 1143 |
+
with gr.Row():
|
| 1144 |
+
check_btn = gr.Button("🔍 Vérifier Véhicule")
|
| 1145 |
+
save_btn = gr.Button("💾 Enregistrer", interactive=False)
|
| 1146 |
+
|
| 1147 |
+
with gr.Row(visible=False) as access_form:
|
| 1148 |
+
with gr.Column():
|
| 1149 |
+
access_status = gr.Radio(
|
| 1150 |
+
["Autorisé", "Non Autorisé"],
|
| 1151 |
+
label="Statut d'accès"
|
| 1152 |
+
)
|
| 1153 |
+
time_range = gr.Dropdown(
|
| 1154 |
+
["24/24", "8:00-16:00", "9:00-17:00", "Personnalisé..."],
|
| 1155 |
+
label="Plage horaire"
|
| 1156 |
+
)
|
| 1157 |
+
custom_time = gr.Textbox(
|
| 1158 |
+
visible=False,
|
| 1159 |
+
placeholder="HH:MM-HH:MM",
|
| 1160 |
+
label="Entrez la plage horaire"
|
| 1161 |
+
)
|
| 1162 |
+
save_btn = gr.Button("Confirmer Enregistrement")
|
| 1163 |
+
|
| 1164 |
+
access_output = gr.Textbox(label="Résultat Vérification")
|
| 1165 |
+
|
| 1166 |
+
with gr.Column():
|
| 1167 |
+
original_image = gr.Image(label="Image originale")
|
| 1168 |
+
processed_image = gr.Image(label="Image annotée")
|
| 1169 |
+
status_output = gr.Textbox(label="Statut")
|
| 1170 |
+
|
| 1171 |
+
# Onglets restants (sans Gestion Accès qui a été déplacé)
|
| 1172 |
+
with gr.Tab("Couleur"):
|
| 1173 |
+
color_output = gr.Textbox(label="Détection de couleur")
|
| 1174 |
+
color_image = gr.Image(label="Image avec détection")
|
| 1175 |
+
|
| 1176 |
+
with gr.Tab("Orientation"):
|
| 1177 |
+
orientation_output = gr.Textbox(label="Détection d'orientation")
|
| 1178 |
+
orientation_image = gr.Image(label="Image avec détection")
|
| 1179 |
+
|
| 1180 |
+
with gr.Tab("Logo & Modèle"):
|
| 1181 |
+
with gr.Column():
|
| 1182 |
+
logo_output = gr.Textbox(label="Détection de marque")
|
| 1183 |
+
model_output = gr.Textbox(label="Détection de modèle")
|
| 1184 |
+
|
| 1185 |
+
logo_image = gr.Image(label="Logo détecté")
|
| 1186 |
+
|
| 1187 |
+
with gr.Tab("Plaque"):
|
| 1188 |
+
with gr.Column():
|
| 1189 |
+
plate_image = gr.Image(label="Plaque détectée")
|
| 1190 |
+
plate_chars_image = gr.Image(label="Plaque avec caractères")
|
| 1191 |
+
plate_chars_list = gr.Textbox(label="Caractères détectés")
|
| 1192 |
+
|
| 1193 |
+
with gr.Tab("Classification"):
|
| 1194 |
+
with gr.Column():
|
| 1195 |
+
plate_classification = gr.Textbox(label="Détails de la plaque")
|
| 1196 |
+
vehicle_type_output = gr.Textbox(label="Type de véhicule")
|
| 1197 |
+
with gr.Row():
|
| 1198 |
+
algerian_check_output = gr.Textbox(label="Origine", scale=2)
|
| 1199 |
+
action_output = gr.Textbox(label="Action recommandée", scale=3)
|
| 1200 |
+
|
| 1201 |
+
def update_input_visibility(input_type):
|
| 1202 |
+
if input_type == "Vidéo":
|
| 1203 |
+
return gr.Button(visible=True)
|
| 1204 |
+
else:
|
| 1205 |
+
return gr.Button(visible=False)
|
| 1206 |
+
|
| 1207 |
+
input_type.change(
|
| 1208 |
+
fn=update_input_visibility,
|
| 1209 |
+
inputs=input_type,
|
| 1210 |
+
outputs=next_frame_btn
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
|
| 1214 |
+
##############################""
|
| 1215 |
+
def extract_video_frames(video_path, num_frames=12):
|
| 1216 |
+
"""Extraire plusieurs frames d'une vidéo pour la sélection"""
|
| 1217 |
+
cap = cv2.VideoCapture(video_path)
|
| 1218 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 1219 |
+
frames = []
|
| 1220 |
+
|
| 1221 |
+
# Extraire des frames régulièrement espacées
|
| 1222 |
+
for i in range(num_frames):
|
| 1223 |
+
frame_pos = int(i * (total_frames / num_frames))
|
| 1224 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
|
| 1225 |
+
ret, frame = cap.read()
|
| 1226 |
+
if ret:
|
| 1227 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 1228 |
+
frames.append((frame_pos, Image.fromarray(frame_rgb)))
|
| 1229 |
+
|
| 1230 |
+
cap.release()
|
| 1231 |
+
return frames
|
| 1232 |
+
|
| 1233 |
+
##############
|
| 1234 |
+
|
| 1235 |
+
def process_load(input_type, files):
|
| 1236 |
+
if files is None:
|
| 1237 |
+
raise gr.Error("Veuillez sélectionner un fichier")
|
| 1238 |
+
|
| 1239 |
+
file_path = files.name if hasattr(files, 'name') else files
|
| 1240 |
+
|
| 1241 |
+
if input_type == "Image" and not file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
|
| 1242 |
+
raise gr.Error("Veuillez sélectionner une image valide (PNG, JPG, JPEG)")
|
| 1243 |
+
elif input_type == "Vidéo" and not file_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
| 1244 |
+
raise gr.Error("Veuillez sélectionner une vidéo valide (MP4, AVI, MOV)")
|
| 1245 |
+
|
| 1246 |
+
if input_type == "Image":
|
| 1247 |
+
return (
|
| 1248 |
+
load_image(file_path),
|
| 1249 |
+
"Image chargée - Cliquez sur les boutons pour analyser",
|
| 1250 |
+
gr.Button(visible=False),
|
| 1251 |
+
gr.Gallery(visible=False),
|
| 1252 |
+
gr.Slider(visible=False),
|
| 1253 |
+
gr.Button(visible=False)
|
| 1254 |
+
)
|
| 1255 |
+
else:
|
| 1256 |
+
# Pour les vidéos, extraire les miniatures
|
| 1257 |
+
frames = extract_video_frames(file_path)
|
| 1258 |
+
shared_results["video_path"] = file_path
|
| 1259 |
+
shared_results["video_frames"] = frames
|
| 1260 |
+
|
| 1261 |
+
return (
|
| 1262 |
+
None, # Pas d'image principale initiale
|
| 1263 |
+
f"Vidéo chargée - {len(frames)} frames extraits",
|
| 1264 |
+
gr.Button(visible=True),
|
| 1265 |
+
gr.Gallery(visible=True, value=[(img, f"Frame {pos}") for pos, img in frames]),
|
| 1266 |
+
gr.Slider(visible=True, maximum=len(frames)-1, value=0, step=1, label="Frame sélectionné"),
|
| 1267 |
+
gr.Button(visible=True, value="Charger le frame sélectionné")
|
| 1268 |
+
)
|
| 1269 |
+
|
| 1270 |
+
######################################
|
| 1271 |
+
def load_selected_frame(selected_frame_idx):
|
| 1272 |
+
if not shared_results.get("video_frames"):
|
| 1273 |
+
raise gr.Error("Aucune vidéo chargée")
|
| 1274 |
+
|
| 1275 |
+
frame_pos, frame_img = shared_results["video_frames"][selected_frame_idx]
|
| 1276 |
+
|
| 1277 |
+
# Mettre à jour le frame courant dans les résultats partagés
|
| 1278 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
| 1279 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
|
| 1280 |
+
ret, frame = cap.read()
|
| 1281 |
+
cap.release()
|
| 1282 |
+
|
| 1283 |
+
if not ret:
|
| 1284 |
+
raise gr.Error("Erreur de lecture du frame sélectionné")
|
| 1285 |
+
|
| 1286 |
+
# Convertir et préparer l'image
|
| 1287 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 1288 |
+
img_draw = img_rgb.copy()
|
| 1289 |
+
|
| 1290 |
+
# Mettre à jour les résultats partagés
|
| 1291 |
+
shared_results.update({
|
| 1292 |
+
"original_image": frame,
|
| 1293 |
+
"img_rgb": img_rgb,
|
| 1294 |
+
"img_draw": img_draw,
|
| 1295 |
+
"current_frame": frame,
|
| 1296 |
+
"corrected_orientation": False,
|
| 1297 |
+
"frame_count": frame_pos,
|
| 1298 |
+
"video_processing": True
|
| 1299 |
+
})
|
| 1300 |
+
|
| 1301 |
+
return (
|
| 1302 |
+
Image.fromarray(img_rgb),
|
| 1303 |
+
f"Frame {frame_pos} chargé - Prêt pour analyse",
|
| 1304 |
+
gr.Button(visible=True)
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
########################
|
| 1308 |
+
# Nouveaux callbacks
|
| 1309 |
+
def toggle_time_range(choice):
|
| 1310 |
+
"""Afficher/masquer le champ personnalisé"""
|
| 1311 |
+
if choice == "Personnalisé...":
|
| 1312 |
+
return gr.Textbox(visible=True)
|
| 1313 |
+
return gr.Textbox(visible=False)
|
| 1314 |
+
|
| 1315 |
+
def verify_vehicle():
|
| 1316 |
+
"""Vérifier l'existence du véhicule"""
|
| 1317 |
+
if not shared_results["trocr_combined_text"]:
|
| 1318 |
+
raise gr.Error("Aucune plaque détectée")
|
| 1319 |
+
|
| 1320 |
+
plate_info = classify_plate(shared_results["trocr_combined_text"])
|
| 1321 |
+
if not plate_info:
|
| 1322 |
+
raise gr.Error("Plaque non valide")
|
| 1323 |
+
|
| 1324 |
+
exists, message = check_vehicle(plate_info['matricule_complet'])
|
| 1325 |
+
|
| 1326 |
+
if exists:
|
| 1327 |
+
allowed = "✅ ACCÈS AUTORISÉ" if is_access_allowed(plate_info['matricule_complet']) else "❌ ACCÈS REFUSÉ"
|
| 1328 |
+
return {
|
| 1329 |
+
access_output: f"{message}\n{allowed}",
|
| 1330 |
+
access_form: gr.update(visible=False),
|
| 1331 |
+
save_btn: gr.update(interactive=False)
|
| 1332 |
+
}
|
| 1333 |
+
else:
|
| 1334 |
+
return {
|
| 1335 |
+
access_output: message,
|
| 1336 |
+
access_form: gr.update(visible=True),
|
| 1337 |
+
save_btn: gr.update(interactive=True)
|
| 1338 |
+
}
|
| 1339 |
+
|
| 1340 |
+
def save_vehicle_info(status, time_choice, custom_time_input):
|
| 1341 |
+
"""Enregistrer les informations du véhicule"""
|
| 1342 |
+
if not shared_results.get("classified_plate"):
|
| 1343 |
+
raise gr.Error("Aucune information de plaque disponible")
|
| 1344 |
+
|
| 1345 |
+
plate_info = shared_results["classified_plate"]
|
| 1346 |
+
|
| 1347 |
+
# Gestion du temps personnalisé
|
| 1348 |
+
if time_choice == "Personnalisé...":
|
| 1349 |
+
if not TIME_PATTERN.match(custom_time_input):
|
| 1350 |
+
raise gr.Error("Format horaire invalide. Utilisez HH:MM-HH:MM")
|
| 1351 |
+
time_range = custom_time_input
|
| 1352 |
+
else:
|
| 1353 |
+
time_range = time_choice
|
| 1354 |
+
|
| 1355 |
+
# Get brand and model, handling cases where they might not be available
|
| 1356 |
+
brand = shared_results.get("vehicle_brand", "Inconnu")
|
| 1357 |
+
model = shared_results.get("vehicle_model", "Inconnu")
|
| 1358 |
+
|
| 1359 |
+
# Sauvegarde
|
| 1360 |
+
success, message = save_vehicle(
|
| 1361 |
+
plate_info,
|
| 1362 |
+
shared_results.get("label_color", "Inconnu"),
|
| 1363 |
+
model,
|
| 1364 |
+
brand,
|
| 1365 |
+
status,
|
| 1366 |
+
time_range
|
| 1367 |
+
)
|
| 1368 |
+
|
| 1369 |
+
if not success:
|
| 1370 |
+
raise gr.Error(message)
|
| 1371 |
+
|
| 1372 |
+
return {
|
| 1373 |
+
access_output: message,
|
| 1374 |
+
access_form: gr.update(visible=False),
|
| 1375 |
+
save_btn: gr.update(interactive=False)
|
| 1376 |
+
}
|
| 1377 |
+
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
|
| 1381 |
+
# Connexion des boutons aux fonctions
|
| 1382 |
+
load_btn.click(
|
| 1383 |
+
fn=process_load,
|
| 1384 |
+
inputs=[input_type, file_input],
|
| 1385 |
+
outputs=[original_image, status_output, next_frame_btn]
|
| 1386 |
+
)
|
| 1387 |
+
################
|
| 1388 |
+
# Mettre à jour les connexions
|
| 1389 |
+
load_btn.click(
|
| 1390 |
+
fn=process_load,
|
| 1391 |
+
inputs=[input_type, file_input],
|
| 1392 |
+
outputs=[
|
| 1393 |
+
original_image,
|
| 1394 |
+
status_output,
|
| 1395 |
+
next_frame_btn,
|
| 1396 |
+
frame_gallery,
|
| 1397 |
+
frame_slider,
|
| 1398 |
+
load_frame_btn
|
| 1399 |
+
]
|
| 1400 |
+
)
|
| 1401 |
+
|
| 1402 |
+
load_frame_btn.click(
|
| 1403 |
+
fn=load_selected_frame,
|
| 1404 |
+
inputs=[frame_slider],
|
| 1405 |
+
outputs=[original_image, status_output, next_frame_btn]
|
| 1406 |
+
)
|
| 1407 |
+
#####################
|
| 1408 |
+
|
| 1409 |
+
detect_vehicle_btn.click(
|
| 1410 |
+
fn=detect_vehicle,
|
| 1411 |
+
outputs=[status_output, processed_image]
|
| 1412 |
+
)
|
| 1413 |
+
|
| 1414 |
+
detect_color_btn.click(
|
| 1415 |
+
fn=detect_color,
|
| 1416 |
+
outputs=[color_output, processed_image]
|
| 1417 |
+
)
|
| 1418 |
+
|
| 1419 |
+
detect_orientation_btn.click(
|
| 1420 |
+
fn=detect_orientation,
|
| 1421 |
+
outputs=[orientation_output, processed_image]
|
| 1422 |
+
)
|
| 1423 |
+
|
| 1424 |
+
detect_logo_btn.click(
|
| 1425 |
+
fn=detect_logo_and_model,
|
| 1426 |
+
outputs=[logo_output, model_output, logo_recognition_output, processed_image, logo_image]
|
| 1427 |
+
)
|
| 1428 |
+
|
| 1429 |
+
detect_plate_btn.click(
|
| 1430 |
+
fn=detect_plate,
|
| 1431 |
+
outputs=[processed_image, plate_image, plate_chars_image, plate_chars_list]
|
| 1432 |
+
)
|
| 1433 |
+
|
| 1434 |
+
classify_plate_btn.click(
|
| 1435 |
+
fn=classify_plate_number,
|
| 1436 |
+
outputs=[
|
| 1437 |
+
plate_classification,
|
| 1438 |
+
vehicle_type_output,
|
| 1439 |
+
algerian_check_output,
|
| 1440 |
+
action_output
|
| 1441 |
+
]
|
| 1442 |
+
)
|
| 1443 |
+
|
| 1444 |
+
next_frame_btn.click(
|
| 1445 |
+
fn=next_frame,
|
| 1446 |
+
outputs=[original_image, status_output,
|
| 1447 |
+
color_output, orientation_output,
|
| 1448 |
+
logo_output, model_output,
|
| 1449 |
+
plate_classification, vehicle_type_output]
|
| 1450 |
+
)
|
| 1451 |
+
|
| 1452 |
+
# Connecter les nouveaux composants
|
| 1453 |
+
time_range.change(
|
| 1454 |
+
fn=toggle_time_range,
|
| 1455 |
+
inputs=time_range,
|
| 1456 |
+
outputs=custom_time
|
| 1457 |
+
)
|
| 1458 |
+
|
| 1459 |
+
check_btn.click(
|
| 1460 |
+
fn=verify_vehicle,
|
| 1461 |
+
outputs=[access_output, access_form, save_btn]
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
save_btn.click(
|
| 1465 |
+
fn=save_vehicle_info,
|
| 1466 |
+
inputs=[access_status, time_range, custom_time],
|
| 1467 |
+
outputs=[access_output, access_form, save_btn]
|
| 1468 |
+
)
|
| 1469 |
+
|
| 1470 |
+
# Lancer l'interface
|
| 1471 |
+
if __name__ == "__main__":
|
| 1472 |
+
init_database() # Créer la base SQLite si elle n'existe pas
|
| 1473 |
+
demo.launch()
|
car_color_classifier.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a9f7df0b7e5e9cbe3412b63f4becfd9ad46182dd5bfad264cce2dac14027909
|
| 3 |
+
size 39722836
|
car_logo_detection.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c551e8a144a5815126d6ad0ef0402c7447dd1189057332f9f14b477f689863fe
|
| 3 |
+
size 6229923
|
character_detetion.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0714aefd9836c39657ab6ffbc3bb2c2c2996859df3751cb2e68db94888cf242
|
| 3 |
+
size 18508694
|
chevrolet_model_final2.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9a6d701050d69d9d78b6749c38252581ba055d67c994059231ed19ee3b0b907
|
| 3 |
+
size 228495059
|
direction_best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de9fcc1fc76690223ee822cad480377c56b86ddb2f2d9fc5ea202743ff4d4339
|
| 3 |
+
size 6248867
|
logo_model_cnn.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d1fbac8a0b1b6a2072b7f8ab0752632265bec5d7020408de6adf08b26a3bebc
|
| 3 |
+
size 78362984
|
nissan_model_final2.keras
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ccb665d88fb6f2a334d77745142756fa1d6a2ec026ff8caa137e1324ff3da83
|
| 3 |
+
size 228501211
|
plate_detection.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f02c9507b8a156ada378da1ad6b264d700ce58b594e31d39c8b032369748f29a
|
| 3 |
+
size 22498211
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
ultralytics
|
| 3 |
+
opencv-python
|
| 4 |
+
numpy
|
| 5 |
+
Pillow
|
| 6 |
+
torch
|
| 7 |
+
transformers
|
| 8 |
+
tensorflow
|
vehicle_detection.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3fe9a41930fe10b103cffc95fe06d9ec309888adc16df901e1df9a26a9fe586
|
| 3 |
+
size 6252067
|
vehicules_database.db
ADDED
|
Binary file (16.4 kB). View file
|
|
|