Upload 12 files
Browse files- .gitattributes +2 -0
- app.py +1473 -0
- car_color_classifier.h5 +3 -0
- car_logo_detection.pt +3 -0
- character_detetion.pt +3 -0
- chevrolet_model_final2.keras +3 -0
- direction_best.pt +3 -0
- logo_model_cnn.h5 +3 -0
- nissan_model_final2.keras +3 -0
- plate_detection.pt +3 -0
- requirements.txt +8 -0
- vehicle_detection.pt +3 -0
- vehicules_database.db +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chevrolet_model_final2.keras filter=lfs diff=lfs merge=lfs -text
|
37 |
+
nissan_model_final2.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,1473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
8 |
+
from datetime import datetime
|
9 |
+
from tensorflow.keras.models import load_model
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
#ficher.db
|
13 |
+
import sqlite3
|
14 |
+
from sqlite3 import Error
|
15 |
+
import re # Module pour les expressions régulières
|
16 |
+
|
17 |
+
# ------------------------------
|
18 |
+
# 1. CHARGEMENT DES MODÈLES
|
19 |
+
# ------------------------------
|
20 |
+
|
21 |
+
# Modèle CNN pour reconnaissance des logos
|
22 |
+
cnn_logo_model = load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\logo_model_cnn.h5")
|
23 |
+
# Chargement automatique des classes depuis le dossier train
|
24 |
+
train_dir = r"C:\Users\ADMIN\Downloads\train-20250512T133726Z-1-001\train"
|
25 |
+
logo_classes = sorted([d for d in os.listdir(train_dir) if os.path.isdir(os.path.join(train_dir, d))])
|
26 |
+
print(f"Classes de logos chargées ({len(logo_classes)}): {logo_classes}")
|
27 |
+
# Modèles YOLO
|
28 |
+
model_color = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\car_color.pt")
|
29 |
+
model_orientation = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\direction_best.pt")
|
30 |
+
model_plate_detection = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\plate_detection.pt")
|
31 |
+
model_logo_detection = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\car_logo_detection.pt")
|
32 |
+
model_characters = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\character_detetion.pt")
|
33 |
+
model_vehicle = YOLO(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\vehicle_detection.pt")
|
34 |
+
|
35 |
+
# Modèle TrOCR pour reconnaissance de caractères
|
36 |
+
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
|
37 |
+
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
38 |
+
|
39 |
+
# Modèles de reconnaissance de modèle par marque
|
40 |
+
model_per_brand = {
|
41 |
+
'nissan': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\nissan_model_final2.keras"),
|
42 |
+
'chevrolet': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\chevrolet_model_final2.keras"),
|
43 |
+
'honda': load_model(r"C:\Users\ADMIN\Downloads\VehicleRecognitionApp\best\mon_model_cnn_honda.h5"),
|
44 |
+
}
|
45 |
+
|
46 |
+
model_labels = {
|
47 |
+
'nissan': ['nissan-altima', 'nissan-armada', 'nissan-datsun', 'nissan-maxima', 'nissan-navara', 'nissan-patrol', 'nissan-sunny'],
|
48 |
+
'chevrolet': ['chevrolet-aveo', 'chevrolet-impala', 'chevrolet-malibu', 'chevrolet-silverado', 'chevrolet-tahoe', 'chevrolet-traverse'],
|
49 |
+
'honda': ['honda-accord', 'honda-odyssey'],
|
50 |
+
}
|
51 |
+
|
52 |
+
# ------------------------------
|
53 |
+
# 2. DICTIONNAIRES DE RÉFÉRENCE
|
54 |
+
# ------------------------------
|
55 |
+
|
56 |
+
CATEGORIES = {
|
57 |
+
'1': "Véhicules de tourisme",
|
58 |
+
'2': "Camions",
|
59 |
+
'3': "Camionnettes",
|
60 |
+
'4': "Autocars et autobus",
|
61 |
+
'5': "Tracteurs routiers",
|
62 |
+
'6': "Autres tracteurs",
|
63 |
+
'7': "Véhicules spéciaux",
|
64 |
+
'8': "Remorques et semi-remorques",
|
65 |
+
'9': "Motocyclettes"
|
66 |
+
}
|
67 |
+
|
68 |
+
WILAYAS = {
|
69 |
+
"01": "Adrar", "02": "Chlef", "03": "Laghouat", "04": "Oum El Bouaghi",
|
70 |
+
"05": "Batna", "06": "Béjaïa", "07": "Biskra", "08": "Béchar",
|
71 |
+
"09": "Blida", "10": "Bouira", "11": "Tamanrasset", "12": "Tébessa",
|
72 |
+
"13": "Tlemcen", "14": "Tiaret", "15": "Tizi Ouzou", "16": "Alger",
|
73 |
+
"17": "Djelfa", "18": "Jijel", "19": "Sétif", "20": "Saïda",
|
74 |
+
"21": "Skikda", "22": "Sidi Bel Abbès", "23": "Annaba", "24": "Guelma",
|
75 |
+
"25": "Constantine", "26": "Médéa", "27": "Mostaganem", "28": "MSila",
|
76 |
+
"29": "Mascara", "30": "Ouargla", "31": "Oran", "32": "El Bayadh",
|
77 |
+
"33": "Illizi", "34": "Bordj Bou Arreridj", "35": "Boumerdès",
|
78 |
+
"36": "El Tarf", "37": "Tindouf", "38": "Tissemsilt", "39": "El Oued",
|
79 |
+
"40": "Khenchela", "41": "Souk Ahras", "42": "Tipaza", "43": "Mila",
|
80 |
+
"44": "Aïn Defla", "45": "Naâma", "46": "Aïn Témouchent",
|
81 |
+
"47": "Ghardaïa", "48": "Relizane",
|
82 |
+
"49": "El M'Ghair", "50": "El Menia",
|
83 |
+
"51": "Ouled Djellal", "52": "Bordj Badji Mokhtar",
|
84 |
+
"53": "Béni Abbès", "54": "Timimoun",
|
85 |
+
"55": "Touggourt", "56": "Djanet",
|
86 |
+
"57": "In Salah", "58": "In Guezzam"
|
87 |
+
}
|
88 |
+
|
89 |
+
# ------------------------------
|
90 |
+
# 3. VARIABLES PARTAGÉES
|
91 |
+
# ------------------------------
|
92 |
+
|
93 |
+
shared_results = {
|
94 |
+
"original_image": None,
|
95 |
+
"img_rgb": None,
|
96 |
+
"img_draw": None,
|
97 |
+
"plate_crop_img": None,
|
98 |
+
"logo_crop_img": None,
|
99 |
+
"plate_with_chars_img": None,
|
100 |
+
"trocr_char_list": [],
|
101 |
+
"trocr_combined_text": "",
|
102 |
+
"classification_result": "",
|
103 |
+
"label_color": "",
|
104 |
+
"label_orientation": "",
|
105 |
+
"vehicle_type": "",
|
106 |
+
"vehicle_model": "",
|
107 |
+
"vehicle_brand": "",
|
108 |
+
"logo_recognition_results": [],
|
109 |
+
"current_frame": None,
|
110 |
+
"video_path": None,
|
111 |
+
"video_processing": False,
|
112 |
+
"frame_count": 0,
|
113 |
+
"total_frames": 0,
|
114 |
+
"original_video_dimensions": None,
|
115 |
+
"corrected_orientation": False,
|
116 |
+
"vehicle_box": None, # Pour stocker les coordonnées du véhicule détecté
|
117 |
+
"vehicle_detected": False,
|
118 |
+
"detection_boxes": {
|
119 |
+
"plate": None,
|
120 |
+
"logo": None,
|
121 |
+
"color": None,
|
122 |
+
"orientation": None
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
# ------------------------------
|
127 |
+
# 4. FONCTIONS UTILITAIRES
|
128 |
+
# ------------------------------
|
129 |
+
|
130 |
+
def save_complete_results(plate_info, color, model, orientation, vehicle_type, brand):
|
131 |
+
"""Sauvegarde toutes les informations dans resultats.txt"""
|
132 |
+
with open("/content/drive/MyDrive/resultats.txt", "a", encoding="utf-8") as f:
|
133 |
+
f.write("\n" + "="*60 + "\n")
|
134 |
+
f.write(f"ANALYSE EFFECTUÉE LE : {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}\n")
|
135 |
+
f.write("="*60 + "\n\n")
|
136 |
+
|
137 |
+
# Section plaque d'immatriculation
|
138 |
+
f.write("INFORMATIONS PLAQUE:\n")
|
139 |
+
f.write("-"*50 + "\n")
|
140 |
+
if plate_info:
|
141 |
+
f.write(f"Numéro complet: {plate_info.get('matricule_complet', 'N/A')}\n")
|
142 |
+
f.write(f"Wilaya: {plate_info.get('wilaya', ('', 'N/A'))[1]} ({plate_info.get('wilaya', ('', ''))[0]})\n")
|
143 |
+
f.write(f"Année: {plate_info.get('annee', 'N/A')}\n")
|
144 |
+
f.write(f"Catégorie: {plate_info.get('categorie', ('', 'N/A'))[1]} ({plate_info.get('categorie', ('', ''))[0]})\n")
|
145 |
+
f.write(f"Série: {plate_info.get('serie', 'N/A')}\n")
|
146 |
+
else:
|
147 |
+
f.write("Aucune information de plaque disponible\n")
|
148 |
+
|
149 |
+
# Section caractéristiques véhicule
|
150 |
+
f.write("\nCARACTÉRISTIQUES VÉHICULE:\n")
|
151 |
+
f.write("-"*50 + "\n")
|
152 |
+
f.write(f"Couleur: {color if color else 'Non détectée'}\n")
|
153 |
+
f.write(f"Marque: {brand if brand else 'Non détectée'}\n")
|
154 |
+
f.write(f"Modèle: {model if model else 'Non détecté'}\n")
|
155 |
+
f.write(f"Orientation: {orientation if orientation else 'Non détectée'}\n")
|
156 |
+
f.write(f"Type de véhicule: {vehicle_type if vehicle_type else 'Non détecté'}\n")
|
157 |
+
f.write("\n" + "="*60 + "\n\n")
|
158 |
+
|
159 |
+
def classify_plate(text):
|
160 |
+
"""Classification des plaques algériennes (10-11 chiffres)"""
|
161 |
+
try:
|
162 |
+
if not text:
|
163 |
+
return None
|
164 |
+
|
165 |
+
# Nettoyage strict : uniquement les chiffres
|
166 |
+
clean_text = ''.join(c for c in text if c.isdigit())
|
167 |
+
|
168 |
+
# Vérification longueur (10 ou 11 chiffres)
|
169 |
+
if len(clean_text) not in {10, 11}:
|
170 |
+
return None
|
171 |
+
|
172 |
+
# Découpage des parties (exemple pour 11 chiffres: 123 456789 01)
|
173 |
+
serie = clean_text[:3] # 3 premiers chiffres
|
174 |
+
middle = clean_text[3:9] # 6 chiffres centraux
|
175 |
+
wilaya_code = clean_text[9:] # 2 derniers chiffres (wilaya)
|
176 |
+
|
177 |
+
# Vérification wilaya
|
178 |
+
wilaya = WILAYAS.get(wilaya_code, ("", "Wilaya inconnue"))
|
179 |
+
|
180 |
+
# Décodage catégorie (premier chiffre de la partie centrale)
|
181 |
+
categorie_code = middle[0]
|
182 |
+
annee = middle[1:3] # 2 chiffres pour l'année
|
183 |
+
|
184 |
+
return {
|
185 |
+
'matricule_complet': clean_text,
|
186 |
+
'serie': serie,
|
187 |
+
'wilaya': (wilaya_code, wilaya[1]),
|
188 |
+
'annee': f"20{annee}",
|
189 |
+
'categorie': (categorie_code, CATEGORIES.get(categorie_code, ("", "Inconnue"))[1]),
|
190 |
+
'is_algerian': True,
|
191 |
+
'length': len(clean_text)
|
192 |
+
}
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Erreur classification plaque: {str(e)}")
|
196 |
+
return None
|
197 |
+
|
198 |
+
|
199 |
+
def predict_brand(image):
|
200 |
+
"""Prédire la marque de voiture à partir de l'image en utilisant le modèle CNN"""
|
201 |
+
try:
|
202 |
+
img = Image.fromarray(image).resize((224, 224))
|
203 |
+
img_array = np.array(img) / 255.0
|
204 |
+
img_array = np.expand_dims(img_array, axis=0)
|
205 |
+
|
206 |
+
predictions = cnn_logo_model.predict(img_array)
|
207 |
+
predicted_class = np.argmax(predictions[0])
|
208 |
+
confidence = predictions[0][predicted_class]
|
209 |
+
|
210 |
+
if confidence < 0.5:
|
211 |
+
return "Marque non détectée (confiance trop faible)"
|
212 |
+
|
213 |
+
brand = logo_classes[predicted_class]
|
214 |
+
return f"{brand} (confiance: {confidence:.2f})"
|
215 |
+
except Exception as e:
|
216 |
+
print(f"Erreur lors de la prédiction de la marque: {str(e)}")
|
217 |
+
return "Erreur de détection"
|
218 |
+
|
219 |
+
|
220 |
+
def recognize_logo(cropped_logo):
|
221 |
+
"""Reconnaître la marque à partir d'un logo détecté"""
|
222 |
+
try:
|
223 |
+
if cropped_logo.size == 0:
|
224 |
+
return "Logo trop petit pour analyse"
|
225 |
+
|
226 |
+
resized_logo = cv2.resize(np.array(cropped_logo), (128, 128))
|
227 |
+
rgb_logo = cv2.cvtColor(resized_logo, cv2.COLOR_BGR2RGB)
|
228 |
+
normalized_logo = rgb_logo / 255.0
|
229 |
+
input_logo = np.expand_dims(normalized_logo, axis=0)
|
230 |
+
|
231 |
+
predictions = cnn_logo_model.predict(input_logo, verbose=0)
|
232 |
+
pred_index = np.argmax(predictions[0])
|
233 |
+
pred_label = logo_classes[pred_index]
|
234 |
+
pred_conf = predictions[0][pred_index]
|
235 |
+
|
236 |
+
if pred_conf < 0.5:
|
237 |
+
return f"Marque incertaine: {pred_label} ({pred_conf:.2f})"
|
238 |
+
|
239 |
+
return f"{pred_label} (confiance: {pred_conf:.2f})"
|
240 |
+
except Exception as e:
|
241 |
+
print(f"Erreur reconnaissance logo: {str(e)}")
|
242 |
+
return "Erreur d'analyse"
|
243 |
+
|
244 |
+
|
245 |
+
#########" recognize modele"
|
246 |
+
|
247 |
+
|
248 |
+
def recognize_model(brand, logo_crop):
|
249 |
+
"""Reconnaître le modèle spécifique d'une voiture à partir de son logo"""
|
250 |
+
try:
|
251 |
+
if brand.lower() not in model_per_brand:
|
252 |
+
return "Modèle non disponible pour cette marque"
|
253 |
+
|
254 |
+
if logo_crop.size == 0:
|
255 |
+
return "Image trop petite pour analyse"
|
256 |
+
|
257 |
+
model_recognizer = model_per_brand[brand.lower()]
|
258 |
+
model_input_height, model_input_width = model_recognizer.input_shape[1:3]
|
259 |
+
|
260 |
+
resized_model = cv2.resize(np.array(logo_crop), (model_input_width, model_input_height))
|
261 |
+
normalized_model = resized_model / 255.0
|
262 |
+
input_model = np.expand_dims(normalized_model, axis=0)
|
263 |
+
|
264 |
+
model_predictions = model_recognizer.predict(input_model)
|
265 |
+
model_index = np.argmax(model_predictions[0])
|
266 |
+
model_name = model_labels[brand.lower()][model_index]
|
267 |
+
|
268 |
+
return model_name
|
269 |
+
except Exception as e:
|
270 |
+
print(f"Erreur reconnaissance modèle: {str(e)}")
|
271 |
+
return "Erreur de détection"
|
272 |
+
|
273 |
+
def draw_detection_boxes(image):
|
274 |
+
"""Dessiner toutes les boîtes de détection sur l'image"""
|
275 |
+
img_draw = image.copy()
|
276 |
+
|
277 |
+
# Boîte pour le véhicule (en premier pour qu'elle soit en arrière-plan)
|
278 |
+
if shared_results["vehicle_box"]:
|
279 |
+
x1, y1, x2, y2 = shared_results["vehicle_box"]
|
280 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange pour véhicule
|
281 |
+
cv2.putText(img_draw, "VEHICLE", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
|
282 |
+
|
283 |
+
# Boîte pour la plaque
|
284 |
+
if shared_results["detection_boxes"]["plate"]:
|
285 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["plate"]
|
286 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 255, 0), 2) # Vert pour plaque
|
287 |
+
cv2.putText(img_draw, "PLATE", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
288 |
+
|
289 |
+
# Boîte pour le logo
|
290 |
+
if shared_results["detection_boxes"]["logo"]:
|
291 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["logo"]
|
292 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2) # Bleu pour logo
|
293 |
+
cv2.putText(img_draw, "LOGO", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
294 |
+
|
295 |
+
# Ajouter le modèle si détecté
|
296 |
+
if shared_results["vehicle_model"]:
|
297 |
+
model_text = shared_results["vehicle_model"].split("(")[0].strip() if "(" in shared_results["vehicle_model"] else shared_results["vehicle_model"]
|
298 |
+
cv2.putText(img_draw, f"Model: {model_text}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
299 |
+
|
300 |
+
# Boîte pour la couleur
|
301 |
+
if shared_results["detection_boxes"]["color"]:
|
302 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["color"]
|
303 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (0, 0, 255), 2) # Rouge pour couleur
|
304 |
+
cv2.putText(img_draw, "COLOR", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
|
305 |
+
|
306 |
+
# Ajouter la couleur détectée
|
307 |
+
if shared_results["label_color"]:
|
308 |
+
cv2.putText(img_draw, f"{shared_results['label_color']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
309 |
+
|
310 |
+
# Boîte pour l'orientation
|
311 |
+
if shared_results["detection_boxes"]["orientation"]:
|
312 |
+
x1, y1, x2, y2 = shared_results["detection_boxes"]["orientation"]
|
313 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 255, 0), 2) # Cyan pour orientation
|
314 |
+
cv2.putText(img_draw, "ORIENTATION", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 0), 2)
|
315 |
+
|
316 |
+
# Ajouter l'orientation détectée
|
317 |
+
if shared_results["label_orientation"]:
|
318 |
+
cv2.putText(img_draw, f"{shared_results['label_orientation']}", (x1, y2 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
|
319 |
+
|
320 |
+
return img_draw
|
321 |
+
|
322 |
+
# ------------------------------
|
323 |
+
# 5. FONCTIONS PRINCIPALES
|
324 |
+
# ------------------------------
|
325 |
+
|
326 |
+
def load_input(input_data):
|
327 |
+
"""Charger une image ou une vidéo et préparer le premier frame"""
|
328 |
+
if isinstance(input_data, str): # Fichier (vidéo ou image)
|
329 |
+
if input_data.lower().endswith(('.png', '.jpg', '.jpeg')):
|
330 |
+
# Traitement comme une image
|
331 |
+
return load_image(input_data)
|
332 |
+
else:
|
333 |
+
# Traitement comme une vidéo
|
334 |
+
return load_video(input_data)
|
335 |
+
else: # Image directe (numpy array)
|
336 |
+
return load_image(input_data)
|
337 |
+
|
338 |
+
def load_image(image_path):
|
339 |
+
"""Charger et préparer l'image de base"""
|
340 |
+
if isinstance(image_path, str):
|
341 |
+
img = cv2.imread(image_path)
|
342 |
+
else: # Si c'est déjà un numpy array (cas du fichier uploadé)
|
343 |
+
img = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
|
344 |
+
|
345 |
+
if img is None:
|
346 |
+
raise gr.Error("Échec de lecture de l'image")
|
347 |
+
|
348 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
349 |
+
img_draw = img_rgb.copy()
|
350 |
+
|
351 |
+
shared_results["original_image"] = img
|
352 |
+
shared_results["img_rgb"] = img_rgb
|
353 |
+
shared_results["img_draw"] = img_draw
|
354 |
+
shared_results["video_processing"] = False
|
355 |
+
shared_results["corrected_orientation"] = False
|
356 |
+
|
357 |
+
# Réinitialiser les boîtes de détection
|
358 |
+
shared_results["detection_boxes"] = {
|
359 |
+
"plate": None,
|
360 |
+
"logo": None,
|
361 |
+
"color": None,
|
362 |
+
"orientation": None
|
363 |
+
}
|
364 |
+
|
365 |
+
return Image.fromarray(img_rgb)
|
366 |
+
|
367 |
+
def load_video(video_path):
|
368 |
+
"""Charger une vidéo et préparer le premier frame"""
|
369 |
+
cap = cv2.VideoCapture(video_path)
|
370 |
+
if not cap.isOpened():
|
371 |
+
raise gr.Error("Échec de lecture de la vidéo")
|
372 |
+
|
373 |
+
# Sauvegarder le chemin de la vidéo et les informations
|
374 |
+
shared_results["video_path"] = video_path
|
375 |
+
shared_results["video_processing"] = True
|
376 |
+
shared_results["frame_count"] = 0
|
377 |
+
shared_results["total_frames"] = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
378 |
+
|
379 |
+
# Lire les dimensions originales
|
380 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
381 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
382 |
+
shared_results["original_video_dimensions"] = (width, height)
|
383 |
+
|
384 |
+
# Lire le premier frame
|
385 |
+
success, frame = cap.read()
|
386 |
+
cap.release()
|
387 |
+
|
388 |
+
if not success:
|
389 |
+
raise gr.Error("Échec de lecture du premier frame de la vidéo")
|
390 |
+
|
391 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
392 |
+
img_draw = img_rgb.copy()
|
393 |
+
|
394 |
+
shared_results["original_image"] = frame
|
395 |
+
shared_results["img_rgb"] = img_rgb
|
396 |
+
shared_results["img_draw"] = img_draw
|
397 |
+
shared_results["current_frame"] = frame
|
398 |
+
shared_results["corrected_orientation"] = False
|
399 |
+
|
400 |
+
# Réinitialiser les boîtes de détection
|
401 |
+
shared_results["detection_boxes"] = {
|
402 |
+
"plate": None,
|
403 |
+
"logo": None,
|
404 |
+
"color": None,
|
405 |
+
"orientation": None
|
406 |
+
}
|
407 |
+
|
408 |
+
return Image.fromarray(img_rgb)
|
409 |
+
|
410 |
+
def get_next_video_frame():
|
411 |
+
"""Obtenir le frame suivant de la vidéo en cours"""
|
412 |
+
if not shared_results["video_processing"] or not shared_results["video_path"]:
|
413 |
+
return None
|
414 |
+
|
415 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
416 |
+
if not cap.isOpened():
|
417 |
+
return None
|
418 |
+
|
419 |
+
# Aller au frame suivant
|
420 |
+
shared_results["frame_count"] += 1
|
421 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
|
422 |
+
|
423 |
+
success, frame = cap.read()
|
424 |
+
cap.release()
|
425 |
+
|
426 |
+
if not success:
|
427 |
+
# Fin de la vidéo, réinitialiser
|
428 |
+
shared_results["frame_count"] = 0
|
429 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
430 |
+
success, frame = cap.read()
|
431 |
+
cap.release()
|
432 |
+
if not success:
|
433 |
+
return None
|
434 |
+
|
435 |
+
# Conserver les dimensions originales
|
436 |
+
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
|
437 |
+
|
438 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
439 |
+
img_draw = img_rgb.copy()
|
440 |
+
|
441 |
+
shared_results["original_image"] = frame
|
442 |
+
shared_results["img_rgb"] = img_rgb
|
443 |
+
shared_results["img_draw"] = img_draw
|
444 |
+
shared_results["current_frame"] = frame
|
445 |
+
shared_results["corrected_orientation"] = False
|
446 |
+
|
447 |
+
# Réinitialiser les boîtes de détection
|
448 |
+
shared_results["detection_boxes"] = {
|
449 |
+
"plate": None,
|
450 |
+
"logo": None,
|
451 |
+
"color": None,
|
452 |
+
"orientation": None
|
453 |
+
}
|
454 |
+
|
455 |
+
return Image.fromarray(img_rgb)
|
456 |
+
|
457 |
+
# 3. Ajouter une fonction pour détecter les véhicules
|
458 |
+
def detect_vehicle():
|
459 |
+
"""Détecter le véhicule principal dans l'image"""
|
460 |
+
if shared_results["img_rgb"] is None:
|
461 |
+
return "Veuillez d'abord charger une image/vidéo", None
|
462 |
+
|
463 |
+
img_to_process = shared_results["img_rgb"]
|
464 |
+
if shared_results.get("corrected_orientation", False):
|
465 |
+
height, width = img_to_process.shape[:2]
|
466 |
+
if height > width: # Portrait, besoin de rotation
|
467 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
468 |
+
|
469 |
+
results_vehicle = model_vehicle(img_to_process)
|
470 |
+
img_with_boxes = shared_results["img_rgb"].copy()
|
471 |
+
vehicle_detected = False
|
472 |
+
|
473 |
+
for r in results_vehicle:
|
474 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
475 |
+
# Prendre la plus grande détection (supposée être le véhicule principal)
|
476 |
+
largest_box = None
|
477 |
+
max_area = 0
|
478 |
+
for box in r.boxes:
|
479 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
480 |
+
area = (x2 - x1) * (y2 - y1)
|
481 |
+
if area > max_area:
|
482 |
+
max_area = area
|
483 |
+
largest_box = (x1, y1, x2, y2)
|
484 |
+
|
485 |
+
if largest_box:
|
486 |
+
x1, y1, x2, y2 = largest_box
|
487 |
+
shared_results["vehicle_box"] = largest_box
|
488 |
+
shared_results["vehicle_detected"] = True
|
489 |
+
vehicle_detected = True
|
490 |
+
|
491 |
+
# Dessiner le rectangle autour du véhicule
|
492 |
+
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), (0, 165, 255), 2) # Orange pour véhicule
|
493 |
+
cv2.putText(img_with_boxes, "VEHICLE", (x1, y1 - 10),
|
494 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 165, 255), 2)
|
495 |
+
|
496 |
+
shared_results["img_draw"] = img_with_boxes
|
497 |
+
|
498 |
+
if vehicle_detected:
|
499 |
+
return "Véhicule détecté - Vous pouvez maintenant détecter la couleur", Image.fromarray(img_with_boxes)
|
500 |
+
else:
|
501 |
+
shared_results["vehicle_box"] = None
|
502 |
+
shared_results["vehicle_detected"] = False
|
503 |
+
return "Aucun véhicule détecté - La détection de couleur sera moins précise", Image.fromarray(img_with_boxes)
|
504 |
+
|
505 |
+
# 4. Modifier la fonction detect_color() pour utiliser la zone du véhicule si disponible
|
506 |
+
def detect_color():
|
507 |
+
"""Détecter la couleur du véhicule dans la zone détectée"""
|
508 |
+
if shared_results["img_rgb"] is None:
|
509 |
+
return "Veuillez d'abord charger une image/vidéo", None
|
510 |
+
|
511 |
+
img_to_process = shared_results["img_rgb"]
|
512 |
+
if shared_results.get("corrected_orientation", False):
|
513 |
+
height, width = img_to_process.shape[:2]
|
514 |
+
if height > width: # Portrait, besoin de rotation
|
515 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
516 |
+
|
517 |
+
# Si un véhicule a été détecté, utiliser cette zone pour la détection de couleur
|
518 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
519 |
+
x1, y1, x2, y2 = shared_results["vehicle_box"]
|
520 |
+
vehicle_roi = img_to_process[y1:y2, x1:x2]
|
521 |
+
results_color = model_color(vehicle_roi)
|
522 |
+
else:
|
523 |
+
results_color = model_color(img_to_process)
|
524 |
+
|
525 |
+
img_with_boxes = shared_results["img_draw"].copy() if shared_results["img_draw"] is not None else img_to_process.copy()
|
526 |
+
color_detected = False
|
527 |
+
|
528 |
+
for r in results_color:
|
529 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
530 |
+
cls = int(r.boxes.cls[0])
|
531 |
+
shared_results["label_color"] = r.names[cls]
|
532 |
+
|
533 |
+
# Si on a utilisé la ROI du véhicule, ajuster les coordonnées
|
534 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
535 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
536 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
537 |
+
x1, y1, x2, y2 = map(int, box)
|
538 |
+
# Convertir les coordonnées relatives à la ROI en coordonnées absolues
|
539 |
+
abs_x1 = vx1 + x1
|
540 |
+
abs_y1 = vy1 + y1
|
541 |
+
abs_x2 = vx1 + x2
|
542 |
+
abs_y2 = vy1 + y2
|
543 |
+
shared_results["detection_boxes"]["color"] = (abs_x1, abs_y1, abs_x2, abs_y2)
|
544 |
+
else:
|
545 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
546 |
+
x1, y1, x2, y2 = map(int, box)
|
547 |
+
shared_results["detection_boxes"]["color"] = (x1, y1, x2, y2)
|
548 |
+
|
549 |
+
color_detected = True
|
550 |
+
|
551 |
+
# Mettre à jour l'image avec toutes les détections
|
552 |
+
img_with_boxes = draw_detection_boxes(img_with_boxes)
|
553 |
+
shared_results["img_draw"] = img_with_boxes
|
554 |
+
|
555 |
+
if color_detected:
|
556 |
+
return f"Couleur: {shared_results['label_color']}", Image.fromarray(img_with_boxes)
|
557 |
+
else:
|
558 |
+
return "Couleur non détectée", Image.fromarray(img_with_boxes)
|
559 |
+
|
560 |
+
def detect_orientation():
|
561 |
+
"""Détecter l'orientation du véhicule"""
|
562 |
+
if shared_results["img_rgb"] is None:
|
563 |
+
return "Veuillez d'abord charger une image/vidéo"
|
564 |
+
|
565 |
+
# S'assurer que l'image est dans le bon sens
|
566 |
+
img_to_process = shared_results["img_rgb"]
|
567 |
+
if shared_results["video_processing"]:
|
568 |
+
# Pour les vidéos, vérifier l'orientation et corriger si nécessaire
|
569 |
+
height, width = img_to_process.shape[:2]
|
570 |
+
if height > width: # Portrait, besoin de rotation
|
571 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
572 |
+
shared_results["corrected_orientation"] = True
|
573 |
+
|
574 |
+
results_orientation = model_orientation(img_to_process)
|
575 |
+
for r in results_orientation:
|
576 |
+
if hasattr(r, 'boxes') and r.boxes and hasattr(r.boxes, 'cls') and len(r.boxes.cls) > 0:
|
577 |
+
cls = int(r.boxes.cls[0])
|
578 |
+
shared_results["label_orientation"] = r.names[cls]
|
579 |
+
|
580 |
+
# Enregistrer la boîte de détection
|
581 |
+
box = r.boxes.xyxy[0].cpu().numpy()
|
582 |
+
x1, y1, x2, y2 = map(int, box)
|
583 |
+
shared_results["detection_boxes"]["orientation"] = (x1, y1, x2, y2)
|
584 |
+
|
585 |
+
# Mettre à jour l'image avec toutes les détections
|
586 |
+
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
|
587 |
+
shared_results["img_draw"] = img_with_boxes
|
588 |
+
|
589 |
+
return f"Orientation: {shared_results['label_orientation']}" if shared_results['label_orientation'] else "Orientation non détectée", Image.fromarray(img_with_boxes)
|
590 |
+
|
591 |
+
def detect_logo_and_model():
|
592 |
+
"""Détecter et reconnaître le logo et le modèle du véhicule"""
|
593 |
+
if shared_results["img_rgb"] is None:
|
594 |
+
return "Veuillez d'abord charger une image", None, None, None, None
|
595 |
+
|
596 |
+
shared_results["logo_recognition_results"] = []
|
597 |
+
img_draw = shared_results["img_draw"].copy()
|
598 |
+
detected_model = "Modèle non détecté"
|
599 |
+
|
600 |
+
results_logo = model_logo_detection(shared_results["img_rgb"])
|
601 |
+
if results_logo and results_logo[0].boxes:
|
602 |
+
for box in results_logo[0].boxes:
|
603 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
604 |
+
cv2.rectangle(img_draw, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
605 |
+
|
606 |
+
logo_crop = shared_results["img_rgb"][y1:y2, x1:x2]
|
607 |
+
shared_results["logo_crop_img"] = Image.fromarray(logo_crop)
|
608 |
+
|
609 |
+
# Reconnaissance du logo (marque)
|
610 |
+
logo_recognition = recognize_logo(shared_results["logo_crop_img"])
|
611 |
+
shared_results["logo_recognition_results"].append(logo_recognition)
|
612 |
+
|
613 |
+
cv2.putText(img_draw, "LOGO", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255,0,0), 2)
|
614 |
+
|
615 |
+
if not shared_results["vehicle_brand"] or "confiance" not in shared_results["vehicle_brand"]:
|
616 |
+
shared_results["vehicle_brand"] = logo_recognition
|
617 |
+
|
618 |
+
# Reconnaissance du modèle spécifique si la marque est reconnue
|
619 |
+
brand = None
|
620 |
+
if "(" in logo_recognition: # Format: "Marque (confiance: 0.xx)"
|
621 |
+
brand = logo_recognition.split("(")[0].strip().lower()
|
622 |
+
else:
|
623 |
+
brand = logo_recognition.lower()
|
624 |
+
|
625 |
+
if brand in model_per_brand:
|
626 |
+
try:
|
627 |
+
detected_model = recognize_model(brand, shared_results["logo_crop_img"])
|
628 |
+
|
629 |
+
# Mise à jour du texte sur l'image
|
630 |
+
cv2.putText(img_draw, f"Modèle: {detected_model}", (x1, y2 + 20),
|
631 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
|
632 |
+
except Exception as e:
|
633 |
+
print(f"Erreur reconnaissance modèle: {str(e)}")
|
634 |
+
detected_model = "Erreur reconnaissance modèle"
|
635 |
+
|
636 |
+
shared_results["img_draw"] = img_draw
|
637 |
+
shared_results["vehicle_model"] = detected_model
|
638 |
+
|
639 |
+
# Détection globale de la marque si la détection du logo a échoué
|
640 |
+
if not shared_results["vehicle_brand"] or "incertaine" in shared_results["vehicle_brand"] or "Erreur" in shared_results["vehicle_brand"]:
|
641 |
+
global_brand = predict_brand(shared_results["img_rgb"])
|
642 |
+
if global_brand and "non détectée" not in global_brand:
|
643 |
+
shared_results["vehicle_brand"] = global_brand
|
644 |
+
|
645 |
+
logo_results_text = " | ".join(shared_results["logo_recognition_results"]) if shared_results["logo_recognition_results"] else "Aucun logo reconnu"
|
646 |
+
|
647 |
+
return (
|
648 |
+
f"Marque: {shared_results['vehicle_brand']}" if shared_results['vehicle_brand'] else "Marque non détectée",
|
649 |
+
f"Modèle: {shared_results['vehicle_model']}" if shared_results['vehicle_model'] else "Modèle non détecté",
|
650 |
+
f"Reconnaissance logo: {logo_results_text}",
|
651 |
+
Image.fromarray(img_draw),
|
652 |
+
shared_results["logo_crop_img"]
|
653 |
+
)
|
654 |
+
|
655 |
+
def detect_plate():
|
656 |
+
"""Détecter la plaque d'immatriculation et reconnaître les caractères"""
|
657 |
+
if shared_results["img_rgb"] is None:
|
658 |
+
return "Veuillez d'abord charger une image/vidéo", None, None, None
|
659 |
+
|
660 |
+
shared_results["trocr_char_list"] = []
|
661 |
+
shared_results["trocr_combined_text"] = ""
|
662 |
+
img_to_process = shared_results["img_rgb"]
|
663 |
+
|
664 |
+
# Utiliser l'image corrigée si nécessaire
|
665 |
+
if shared_results.get("corrected_orientation", False):
|
666 |
+
height, width = img_to_process.shape[:2]
|
667 |
+
if height > width: # Portrait, besoin de rotation
|
668 |
+
img_to_process = cv2.rotate(img_to_process, cv2.ROTATE_90_CLOCKWISE)
|
669 |
+
|
670 |
+
# Si un véhicule a été détecté, utiliser cette zone pour la détection
|
671 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
672 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
673 |
+
roi = img_to_process[vy1:vy2, vx1:vx2]
|
674 |
+
results_plate = model_plate_detection(roi)
|
675 |
+
else:
|
676 |
+
results_plate = model_plate_detection(img_to_process)
|
677 |
+
|
678 |
+
if results_plate and results_plate[0].boxes:
|
679 |
+
for box in results_plate[0].boxes:
|
680 |
+
# Ajuster les coordonnées si on a utilisé la ROI du véhicule
|
681 |
+
if shared_results["vehicle_detected"] and shared_results["vehicle_box"]:
|
682 |
+
vx1, vy1, vx2, vy2 = shared_results["vehicle_box"]
|
683 |
+
rx1, ry1, rx2, ry2 = map(int, box.xyxy[0])
|
684 |
+
# Convertir en coordonnées absolues
|
685 |
+
x1 = vx1 + rx1
|
686 |
+
y1 = vy1 + ry1
|
687 |
+
x2 = vx1 + rx2
|
688 |
+
y2 = vy1 + ry2
|
689 |
+
else:
|
690 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
691 |
+
|
692 |
+
shared_results["detection_boxes"]["plate"] = (x1, y1, x2, y2)
|
693 |
+
plate_crop = img_to_process[y1:y2, x1:x2]
|
694 |
+
shared_results["plate_crop_img"] = Image.fromarray(plate_crop)
|
695 |
+
plate_for_char_draw = plate_crop.copy()
|
696 |
+
|
697 |
+
# Détection des caractères
|
698 |
+
results_chars = model_characters(plate_crop)
|
699 |
+
char_boxes = []
|
700 |
+
for r in results_chars:
|
701 |
+
if r.boxes:
|
702 |
+
for box in r.boxes:
|
703 |
+
x1c, y1c, x2c, y2c = map(int, box.xyxy[0])
|
704 |
+
char_boxes.append(((x1c, y1c, x2c, y2c), x1c))
|
705 |
+
|
706 |
+
char_boxes.sort(key=lambda x: x[1])
|
707 |
+
|
708 |
+
for i, (coords, _) in enumerate(char_boxes):
|
709 |
+
x1c, y1c, x2c, y2c = coords
|
710 |
+
char_crop = plate_crop[y1c:y2c, x1c:x2c]
|
711 |
+
char_pil = Image.fromarray(char_crop).convert("RGB")
|
712 |
+
|
713 |
+
try:
|
714 |
+
inputs = trocr_processor(images=char_pil, return_tensors="pt").pixel_values
|
715 |
+
generated_ids = trocr_model.generate(inputs)
|
716 |
+
predicted_char = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
717 |
+
shared_results["trocr_char_list"].append(predicted_char)
|
718 |
+
except Exception as e:
|
719 |
+
shared_results["trocr_char_list"].append("?")
|
720 |
+
|
721 |
+
cv2.rectangle(plate_for_char_draw, (x1c, y1c), (x2c, y2c), (255, 0, 255), 1)
|
722 |
+
cv2.putText(plate_for_char_draw, predicted_char, (x1c, y1c - 5),
|
723 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255), 1)
|
724 |
+
|
725 |
+
shared_results["plate_with_chars_img"] = Image.fromarray(plate_for_char_draw)
|
726 |
+
shared_results["trocr_combined_text"] = ''.join(shared_results["trocr_char_list"])
|
727 |
+
break
|
728 |
+
|
729 |
+
# Mettre à jour l'image avec toutes les détections
|
730 |
+
img_with_boxes = draw_detection_boxes(shared_results["img_rgb"])
|
731 |
+
shared_results["img_draw"] = img_with_boxes
|
732 |
+
|
733 |
+
return (
|
734 |
+
Image.fromarray(img_with_boxes),
|
735 |
+
shared_results["plate_crop_img"],
|
736 |
+
shared_results["plate_with_chars_img"],
|
737 |
+
shared_results["trocr_char_list"]
|
738 |
+
)
|
739 |
+
|
740 |
+
def is_empty_plate(cropped_plate_image):
|
741 |
+
"""Détecte si la plaque est visuellement vide (espace blanc)"""
|
742 |
+
if cropped_plate_image is None:
|
743 |
+
return True
|
744 |
+
|
745 |
+
# Convertir en numpy array si c'est une image PIL
|
746 |
+
if isinstance(cropped_plate_image, Image.Image):
|
747 |
+
plate_img = np.array(cropped_plate_image)
|
748 |
+
else:
|
749 |
+
plate_img = cropped_plate_image
|
750 |
+
|
751 |
+
# Convertir en niveaux de gris
|
752 |
+
gray = cv2.cvtColor(plate_img, cv2.COLOR_RGB2GRAY)
|
753 |
+
|
754 |
+
# Seuillage pour détecter les zones non blanches
|
755 |
+
_, thresholded = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
|
756 |
+
|
757 |
+
# Compter les pixels non blancs (potentiels caractères)
|
758 |
+
non_white_pixels = cv2.countNonZero(thresholded)
|
759 |
+
|
760 |
+
# Si moins de 1% de pixels non blancs, considérer comme vide
|
761 |
+
total_pixels = gray.shape[0] * gray.shape[1]
|
762 |
+
return non_white_pixels < (0.01 * total_pixels)
|
763 |
+
|
764 |
+
|
765 |
+
def classify_plate_number():
|
766 |
+
"""Fonction complète de classification des plaques algériennes avec gestion des cas spéciaux"""
|
767 |
+
# 1. Vérification initiale - Aucune détection de plaque
|
768 |
+
if not shared_results.get("plate_crop_img"):
|
769 |
+
return (
|
770 |
+
"Aucune plaque détectée",
|
771 |
+
"Type: Non déterminé",
|
772 |
+
"❌ Aucune détection",
|
773 |
+
"Action: Ajuster l'angle de vue ou la distance"
|
774 |
+
)
|
775 |
+
|
776 |
+
# 2. Cas spécial - Plaque détectée mais visuellement vide (espace blanc)
|
777 |
+
plate_img = shared_results["plate_crop_img"]
|
778 |
+
if isinstance(plate_img, Image.Image):
|
779 |
+
plate_img = np.array(plate_img)
|
780 |
+
|
781 |
+
gray = cv2.cvtColor(plate_img, cv2.COLOR_RGB2GRAY)
|
782 |
+
_, thresholded = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
|
783 |
+
non_white_pixels = cv2.countNonZero(thresholded)
|
784 |
+
|
785 |
+
if non_white_pixels < (0.01 * gray.size):
|
786 |
+
return (
|
787 |
+
"Zone de plaque détectée mais vide",
|
788 |
+
"Type: Non déterminé",
|
789 |
+
"⚠️ Plaque blanche détectée",
|
790 |
+
"Action: Vérifier si la plaque est masquée"
|
791 |
+
)
|
792 |
+
|
793 |
+
# 3. Cas où du texte est détecté
|
794 |
+
if not shared_results.get("trocr_combined_text"):
|
795 |
+
return (
|
796 |
+
"Plaque détectée mais aucun caractère reconnu",
|
797 |
+
"Type: Non déterminé",
|
798 |
+
"⚠️ Plaque illisible",
|
799 |
+
"Action: Améliorer la qualité d'image"
|
800 |
+
)
|
801 |
+
|
802 |
+
plate_text = shared_results["trocr_combined_text"].strip()
|
803 |
+
|
804 |
+
# 4. Vérification présence de lettres (rejet immédiat)
|
805 |
+
if any(c.isalpha() for c in plate_text):
|
806 |
+
return (
|
807 |
+
f"Texte rejeté: {plate_text}",
|
808 |
+
"Type: Non déterminé",
|
809 |
+
"❌ NON ALGÉRIEN (lettres détectées)",
|
810 |
+
"Action: Contrôle immédiat requis"
|
811 |
+
)
|
812 |
+
|
813 |
+
# 5. Extraction des chiffres uniquement
|
814 |
+
digits = ''.join(c for c in plate_text if c.isdigit())
|
815 |
+
|
816 |
+
# 6. Vérification longueur (10-11 chiffres)
|
817 |
+
if len(digits) not in {10, 11}:
|
818 |
+
return (
|
819 |
+
f"Texte rejeté: {plate_text} ({len(digits)} chiffres)",
|
820 |
+
"Type: Non déterminé",
|
821 |
+
f"❌ NON ALGÉRIEN (format invalide)",
|
822 |
+
"Action: Contrôle requis"
|
823 |
+
)
|
824 |
+
|
825 |
+
# 7. Classification algérienne standard
|
826 |
+
try:
|
827 |
+
# Découpage des parties (ex: 123 456789 01)
|
828 |
+
serie = digits[:3]
|
829 |
+
middle = digits[3:9]
|
830 |
+
wilaya_code = digits[9:]
|
831 |
+
|
832 |
+
# Validation wilaya
|
833 |
+
wilaya = WILAYAS.get(wilaya_code, ("", "Wilaya inconnue"))
|
834 |
+
if wilaya_code not in WILAYAS:
|
835 |
+
return (
|
836 |
+
f"Plaque: {digits}",
|
837 |
+
"Type: Non déterminé",
|
838 |
+
f"❌ Wilaya {wilaya_code} inconnue",
|
839 |
+
"Action: Vérification manuelle"
|
840 |
+
)
|
841 |
+
|
842 |
+
# Décodage catégorie et année
|
843 |
+
categorie_code = middle[0]
|
844 |
+
annee = f"20{middle[1:3]}"
|
845 |
+
categorie = CATEGORIES.get(categorie_code, ("", "Inconnue"))
|
846 |
+
|
847 |
+
# Construction du résultat
|
848 |
+
result = {
|
849 |
+
'matricule_complet': digits,
|
850 |
+
'serie': serie,
|
851 |
+
'wilaya': (wilaya_code, wilaya[1]),
|
852 |
+
'annee': annee,
|
853 |
+
'categorie': (categorie_code, categorie[1]),
|
854 |
+
'length': len(digits)
|
855 |
+
}
|
856 |
+
|
857 |
+
shared_results["classified_plate"] = result
|
858 |
+
shared_results["vehicle_type"] = categorie[1]
|
859 |
+
|
860 |
+
return (
|
861 |
+
f"Plaque: {digits}\n"
|
862 |
+
f"Wilaya: {wilaya[1]} ({wilaya_code})\n"
|
863 |
+
f"Année: {annee}\n"
|
864 |
+
f"Catégorie: {categorie[1]}\n"
|
865 |
+
f"Série: {serie}",
|
866 |
+
f"Type: {categorie[1]}",
|
867 |
+
"✅ PLAQUE ALGÉRIENNE VALIDE",
|
868 |
+
"Action: Vérification standard"
|
869 |
+
)
|
870 |
+
|
871 |
+
except Exception as e:
|
872 |
+
print(f"Erreur classification: {str(e)}")
|
873 |
+
return (
|
874 |
+
f"Erreur d'analyse: {plate_text}",
|
875 |
+
"Type: Non déterminé",
|
876 |
+
"❌ Erreur de traitement",
|
877 |
+
"Action: Contrôle technique requis"
|
878 |
+
)
|
879 |
+
|
880 |
+
def next_frame():
|
881 |
+
"""Passer au frame suivant dans une vidéo"""
|
882 |
+
if not shared_results["video_processing"] or not shared_results["video_path"]:
|
883 |
+
return (
|
884 |
+
"Aucune vidéo en cours de traitement",
|
885 |
+
None, # original_image
|
886 |
+
None, # status_output
|
887 |
+
None, # color_output
|
888 |
+
None, # orientation_output
|
889 |
+
None, # logo_output
|
890 |
+
None, # model_output
|
891 |
+
None, # plate_classification
|
892 |
+
None # vehicle_type_output
|
893 |
+
)
|
894 |
+
|
895 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
896 |
+
if not cap.isOpened():
|
897 |
+
return (
|
898 |
+
"Erreur de lecture de la vidéo",
|
899 |
+
None, None, None, None, None, None, None, None
|
900 |
+
)
|
901 |
+
|
902 |
+
# Aller au frame suivant
|
903 |
+
shared_results["frame_count"] += 1
|
904 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, shared_results["frame_count"])
|
905 |
+
success, frame = cap.read()
|
906 |
+
cap.release()
|
907 |
+
|
908 |
+
if not success:
|
909 |
+
# Fin de la vidéo atteinte, revenir au début
|
910 |
+
shared_results["frame_count"] = 0
|
911 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
912 |
+
success, frame = cap.read()
|
913 |
+
cap.release()
|
914 |
+
if not success:
|
915 |
+
return (
|
916 |
+
"Erreur de lecture du premier frame",
|
917 |
+
None, None, None, None, None, None, None, None
|
918 |
+
)
|
919 |
+
|
920 |
+
# Conserver les dimensions originales
|
921 |
+
frame = cv2.resize(frame, shared_results["original_video_dimensions"])
|
922 |
+
|
923 |
+
# Convertir et préparer l'image
|
924 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
925 |
+
img_draw = img_rgb.copy()
|
926 |
+
|
927 |
+
# Mettre à jour les résultats partagés
|
928 |
+
shared_results.update({
|
929 |
+
"original_image": frame,
|
930 |
+
"img_rgb": img_rgb,
|
931 |
+
"img_draw": img_draw,
|
932 |
+
"current_frame": frame,
|
933 |
+
"corrected_orientation": False,
|
934 |
+
"label_color": "",
|
935 |
+
"label_orientation": "",
|
936 |
+
"vehicle_type": "",
|
937 |
+
"vehicle_model": "",
|
938 |
+
"vehicle_brand": "",
|
939 |
+
"logo_recognition_results": [],
|
940 |
+
"trocr_char_list": [],
|
941 |
+
"trocr_combined_text": "",
|
942 |
+
"classification_result": "",
|
943 |
+
"vehicle_box": None,
|
944 |
+
"vehicle_detected": False,
|
945 |
+
"detection_boxes": {
|
946 |
+
"plate": None,
|
947 |
+
"logo": None,
|
948 |
+
"color": None,
|
949 |
+
"orientation": None
|
950 |
+
},
|
951 |
+
"plate_crop_img": None,
|
952 |
+
"logo_crop_img": None,
|
953 |
+
"plate_with_chars_img": None
|
954 |
+
})
|
955 |
+
|
956 |
+
# Retourner les résultats
|
957 |
+
return (
|
958 |
+
Image.fromarray(img_rgb), # original_image
|
959 |
+
f"Frame {shared_results['frame_count']}/{shared_results['total_frames']} - Prêt pour analyse", # status_output
|
960 |
+
None, # color_output (réinitialisé)
|
961 |
+
None, # orientation_output (réinitialisé)
|
962 |
+
None, # logo_output (réinitialisé)
|
963 |
+
None, # model_output (réinitialisé)
|
964 |
+
None, # plate_classification (réinitialisé)
|
965 |
+
None # vehicle_type_output (réinitialisé)
|
966 |
+
)
|
967 |
+
|
968 |
+
|
969 |
+
# ------------------------------
|
970 |
+
# 7. GESTION BASE DE DONNÉES VÉHICULES
|
971 |
+
# ------------------------------
|
972 |
+
|
973 |
+
DB_PATH = "/content/drive/MyDrive/vehicules_database.db"
|
974 |
+
TIME_PATTERN = re.compile(r'^\d{2}:\d{2}-\d{2}:\d{2}$')
|
975 |
+
|
976 |
+
def create_connection():
|
977 |
+
"""Créer une connexion à la base SQLite"""
|
978 |
+
conn = None
|
979 |
+
try:
|
980 |
+
conn = sqlite3.connect(DB_PATH)
|
981 |
+
return conn
|
982 |
+
except Error as e:
|
983 |
+
print(f"Erreur de connexion à SQLite: {e}")
|
984 |
+
return conn
|
985 |
+
|
986 |
+
def init_database():
|
987 |
+
"""Initialiser la base de données SQLite"""
|
988 |
+
conn = create_connection()
|
989 |
+
if conn is not None:
|
990 |
+
try:
|
991 |
+
cursor = conn.cursor()
|
992 |
+
cursor.execute("""
|
993 |
+
CREATE TABLE IF NOT EXISTS vehicules (
|
994 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
995 |
+
plaque TEXT NOT NULL UNIQUE,
|
996 |
+
marque TEXT,
|
997 |
+
modele TEXT,
|
998 |
+
couleur TEXT,
|
999 |
+
statut TEXT,
|
1000 |
+
plage_horaire TEXT,
|
1001 |
+
date_enregistrement TEXT
|
1002 |
+
)
|
1003 |
+
""")
|
1004 |
+
conn.commit()
|
1005 |
+
except Error as e:
|
1006 |
+
print(f"Erreur création table: {e}")
|
1007 |
+
finally:
|
1008 |
+
conn.close()
|
1009 |
+
|
1010 |
+
def check_vehicle(plate_text):
|
1011 |
+
"""Vérifier si un véhicule existe dans la base"""
|
1012 |
+
init_database()
|
1013 |
+
conn = create_connection()
|
1014 |
+
if conn is not None:
|
1015 |
+
try:
|
1016 |
+
cursor = conn.cursor()
|
1017 |
+
cursor.execute("SELECT statut, plage_horaire FROM vehicules WHERE plaque = ?", (plate_text,))
|
1018 |
+
result = cursor.fetchone()
|
1019 |
+
|
1020 |
+
if result:
|
1021 |
+
return True, f"Statut: {result[0]} | Accès: {result[1]}"
|
1022 |
+
return False, "Véhicule non enregistré"
|
1023 |
+
except Error as e:
|
1024 |
+
print(f"Erreur lecture base: {e}")
|
1025 |
+
return False, "Erreur base de données"
|
1026 |
+
finally:
|
1027 |
+
conn.close()
|
1028 |
+
return False, "Erreur de connexion"
|
1029 |
+
|
1030 |
+
def save_vehicle(plate_info, color, model, brand, status, time_range):
|
1031 |
+
"""Enregistrer un nouveau véhicule"""
|
1032 |
+
init_database()
|
1033 |
+
conn = create_connection()
|
1034 |
+
if conn is not None:
|
1035 |
+
try:
|
1036 |
+
# Nettoyer les données
|
1037 |
+
plate_number = str(plate_info['matricule_complet']).strip()
|
1038 |
+
clean_brand = brand.split('(')[0].strip() if '(' in brand else brand
|
1039 |
+
clean_model = model.split('(')[0].strip() if '(' in model else model
|
1040 |
+
|
1041 |
+
cursor = conn.cursor()
|
1042 |
+
|
1043 |
+
# Vérifier si le véhicule existe déjà
|
1044 |
+
cursor.execute("SELECT 1 FROM vehicules WHERE plaque = ?", (plate_number,))
|
1045 |
+
if cursor.fetchone():
|
1046 |
+
return False, "Véhicule déjà existant"
|
1047 |
+
|
1048 |
+
# Insérer le nouveau véhicule
|
1049 |
+
cursor.execute("""
|
1050 |
+
INSERT INTO vehicules (plaque, marque, modele, couleur, statut, plage_horaire, date_enregistrement)
|
1051 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
1052 |
+
""", (
|
1053 |
+
plate_number,
|
1054 |
+
clean_brand,
|
1055 |
+
clean_model,
|
1056 |
+
color,
|
1057 |
+
status,
|
1058 |
+
time_range,
|
1059 |
+
datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
1060 |
+
))
|
1061 |
+
|
1062 |
+
conn.commit()
|
1063 |
+
return True, "Enregistrement réussi"
|
1064 |
+
except Error as e:
|
1065 |
+
return False, f"Erreur enregistrement: {e}"
|
1066 |
+
finally:
|
1067 |
+
conn.close()
|
1068 |
+
return False, "Erreur de connexion"
|
1069 |
+
|
1070 |
+
def is_access_allowed(plate_text):
|
1071 |
+
"""Vérifier si l'accès est autorisé à l'heure actuelle"""
|
1072 |
+
conn = create_connection()
|
1073 |
+
if conn is not None:
|
1074 |
+
try:
|
1075 |
+
cursor = conn.cursor()
|
1076 |
+
cursor.execute("SELECT statut, plage_horaire FROM vehicules WHERE plaque = ?", (plate_text,))
|
1077 |
+
vehicle = cursor.fetchone()
|
1078 |
+
|
1079 |
+
if not vehicle:
|
1080 |
+
return False
|
1081 |
+
|
1082 |
+
if vehicle[0] == "Non Autorisé":
|
1083 |
+
return False
|
1084 |
+
|
1085 |
+
if vehicle[1] == "24/24":
|
1086 |
+
return True
|
1087 |
+
|
1088 |
+
current_time = datetime.now().time()
|
1089 |
+
start_str, end_str = vehicle[1].split('-')
|
1090 |
+
start = time(*map(int, start_str.split(':')))
|
1091 |
+
end = time(*map(int, end_str.split(':')))
|
1092 |
+
|
1093 |
+
return start <= current_time <= end
|
1094 |
+
except Error as e:
|
1095 |
+
print(f"Erreur vérification accès: {e}")
|
1096 |
+
return False
|
1097 |
+
finally:
|
1098 |
+
conn.close()
|
1099 |
+
return False
|
1100 |
+
|
1101 |
+
|
1102 |
+
# ------------------------------
|
1103 |
+
# 6. INTERFACE GRADIO
|
1104 |
+
# ------------------------------
|
1105 |
+
|
1106 |
+
with gr.Blocks(title="🚗 Système de Reconnaissance de Véhicules Algériens") as demo:
|
1107 |
+
gr.Markdown("# 🚗 Système de Reconnaissance de Véhicules Algériens")
|
1108 |
+
gr.Markdown("Détection de plaque d'immatriculation, logo, couleur, modèle et autres caractéristiques du véhicule")
|
1109 |
+
|
1110 |
+
with gr.Row():
|
1111 |
+
with gr.Column():
|
1112 |
+
# Section de chargement améliorée
|
1113 |
+
input_type = gr.Radio(["Image", "Vidéo"], label="Type d'entrée", value="Image", interactive=True)
|
1114 |
+
file_input = gr.File(label="Déposer le fichier ici - ou - Cliquez pour télécharger",
|
1115 |
+
file_types=["image", "video"])
|
1116 |
+
load_btn = gr.Button("Charger le fichier")
|
1117 |
+
|
1118 |
+
###########################""
|
1119 |
+
# Nouveaux éléments pour la sélection de frame
|
1120 |
+
frame_gallery = gr.Gallery(visible=False, label="Sélectionnez un frame", columns=4)
|
1121 |
+
frame_slider = gr.Slider(visible=False, interactive=True, label="Frame sélectionné")
|
1122 |
+
load_frame_btn = gr.Button(visible=False, value="Charger le frame sélectionné")
|
1123 |
+
#########################
|
1124 |
+
|
1125 |
+
# Détections
|
1126 |
+
with gr.Row():
|
1127 |
+
detect_vehicle_btn = gr.Button("Détection de véhicule")
|
1128 |
+
detect_color_btn = gr.Button("Détection de couleur")
|
1129 |
+
|
1130 |
+
with gr.Row():
|
1131 |
+
detect_orientation_btn = gr.Button("Détection de l'orientation")
|
1132 |
+
detect_logo_btn = gr.Button("Logo et modèle")
|
1133 |
+
|
1134 |
+
with gr.Row():
|
1135 |
+
detect_plate_btn = gr.Button("Détection de plaque")
|
1136 |
+
classify_plate_btn = gr.Button("Classifier plaque")
|
1137 |
+
|
1138 |
+
with gr.Row():
|
1139 |
+
next_frame_btn = gr.Button("Frame suivant", visible=False)
|
1140 |
+
|
1141 |
+
# Nouvelle position pour la gestion d'accès (déplacée ici)
|
1142 |
+
with gr.Tab("Gestion Accès"):
|
1143 |
+
with gr.Row():
|
1144 |
+
check_btn = gr.Button("🔍 Vérifier Véhicule")
|
1145 |
+
save_btn = gr.Button("💾 Enregistrer", interactive=False)
|
1146 |
+
|
1147 |
+
with gr.Row(visible=False) as access_form:
|
1148 |
+
with gr.Column():
|
1149 |
+
access_status = gr.Radio(
|
1150 |
+
["Autorisé", "Non Autorisé"],
|
1151 |
+
label="Statut d'accès"
|
1152 |
+
)
|
1153 |
+
time_range = gr.Dropdown(
|
1154 |
+
["24/24", "8:00-16:00", "9:00-17:00", "Personnalisé..."],
|
1155 |
+
label="Plage horaire"
|
1156 |
+
)
|
1157 |
+
custom_time = gr.Textbox(
|
1158 |
+
visible=False,
|
1159 |
+
placeholder="HH:MM-HH:MM",
|
1160 |
+
label="Entrez la plage horaire"
|
1161 |
+
)
|
1162 |
+
save_btn = gr.Button("Confirmer Enregistrement")
|
1163 |
+
|
1164 |
+
access_output = gr.Textbox(label="Résultat Vérification")
|
1165 |
+
|
1166 |
+
with gr.Column():
|
1167 |
+
original_image = gr.Image(label="Image originale")
|
1168 |
+
processed_image = gr.Image(label="Image annotée")
|
1169 |
+
status_output = gr.Textbox(label="Statut")
|
1170 |
+
|
1171 |
+
# Onglets restants (sans Gestion Accès qui a été déplacé)
|
1172 |
+
with gr.Tab("Couleur"):
|
1173 |
+
color_output = gr.Textbox(label="Détection de couleur")
|
1174 |
+
color_image = gr.Image(label="Image avec détection")
|
1175 |
+
|
1176 |
+
with gr.Tab("Orientation"):
|
1177 |
+
orientation_output = gr.Textbox(label="Détection d'orientation")
|
1178 |
+
orientation_image = gr.Image(label="Image avec détection")
|
1179 |
+
|
1180 |
+
with gr.Tab("Logo & Modèle"):
|
1181 |
+
with gr.Column():
|
1182 |
+
logo_output = gr.Textbox(label="Détection de marque")
|
1183 |
+
model_output = gr.Textbox(label="Détection de modèle")
|
1184 |
+
|
1185 |
+
logo_image = gr.Image(label="Logo détecté")
|
1186 |
+
|
1187 |
+
with gr.Tab("Plaque"):
|
1188 |
+
with gr.Column():
|
1189 |
+
plate_image = gr.Image(label="Plaque détectée")
|
1190 |
+
plate_chars_image = gr.Image(label="Plaque avec caractères")
|
1191 |
+
plate_chars_list = gr.Textbox(label="Caractères détectés")
|
1192 |
+
|
1193 |
+
with gr.Tab("Classification"):
|
1194 |
+
with gr.Column():
|
1195 |
+
plate_classification = gr.Textbox(label="Détails de la plaque")
|
1196 |
+
vehicle_type_output = gr.Textbox(label="Type de véhicule")
|
1197 |
+
with gr.Row():
|
1198 |
+
algerian_check_output = gr.Textbox(label="Origine", scale=2)
|
1199 |
+
action_output = gr.Textbox(label="Action recommandée", scale=3)
|
1200 |
+
|
1201 |
+
def update_input_visibility(input_type):
|
1202 |
+
if input_type == "Vidéo":
|
1203 |
+
return gr.Button(visible=True)
|
1204 |
+
else:
|
1205 |
+
return gr.Button(visible=False)
|
1206 |
+
|
1207 |
+
input_type.change(
|
1208 |
+
fn=update_input_visibility,
|
1209 |
+
inputs=input_type,
|
1210 |
+
outputs=next_frame_btn
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
|
1214 |
+
##############################""
|
1215 |
+
def extract_video_frames(video_path, num_frames=12):
|
1216 |
+
"""Extraire plusieurs frames d'une vidéo pour la sélection"""
|
1217 |
+
cap = cv2.VideoCapture(video_path)
|
1218 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
1219 |
+
frames = []
|
1220 |
+
|
1221 |
+
# Extraire des frames régulièrement espacées
|
1222 |
+
for i in range(num_frames):
|
1223 |
+
frame_pos = int(i * (total_frames / num_frames))
|
1224 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
|
1225 |
+
ret, frame = cap.read()
|
1226 |
+
if ret:
|
1227 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
1228 |
+
frames.append((frame_pos, Image.fromarray(frame_rgb)))
|
1229 |
+
|
1230 |
+
cap.release()
|
1231 |
+
return frames
|
1232 |
+
|
1233 |
+
##############
|
1234 |
+
|
1235 |
+
def process_load(input_type, files):
|
1236 |
+
if files is None:
|
1237 |
+
raise gr.Error("Veuillez sélectionner un fichier")
|
1238 |
+
|
1239 |
+
file_path = files.name if hasattr(files, 'name') else files
|
1240 |
+
|
1241 |
+
if input_type == "Image" and not file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
|
1242 |
+
raise gr.Error("Veuillez sélectionner une image valide (PNG, JPG, JPEG)")
|
1243 |
+
elif input_type == "Vidéo" and not file_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
1244 |
+
raise gr.Error("Veuillez sélectionner une vidéo valide (MP4, AVI, MOV)")
|
1245 |
+
|
1246 |
+
if input_type == "Image":
|
1247 |
+
return (
|
1248 |
+
load_image(file_path),
|
1249 |
+
"Image chargée - Cliquez sur les boutons pour analyser",
|
1250 |
+
gr.Button(visible=False),
|
1251 |
+
gr.Gallery(visible=False),
|
1252 |
+
gr.Slider(visible=False),
|
1253 |
+
gr.Button(visible=False)
|
1254 |
+
)
|
1255 |
+
else:
|
1256 |
+
# Pour les vidéos, extraire les miniatures
|
1257 |
+
frames = extract_video_frames(file_path)
|
1258 |
+
shared_results["video_path"] = file_path
|
1259 |
+
shared_results["video_frames"] = frames
|
1260 |
+
|
1261 |
+
return (
|
1262 |
+
None, # Pas d'image principale initiale
|
1263 |
+
f"Vidéo chargée - {len(frames)} frames extraits",
|
1264 |
+
gr.Button(visible=True),
|
1265 |
+
gr.Gallery(visible=True, value=[(img, f"Frame {pos}") for pos, img in frames]),
|
1266 |
+
gr.Slider(visible=True, maximum=len(frames)-1, value=0, step=1, label="Frame sélectionné"),
|
1267 |
+
gr.Button(visible=True, value="Charger le frame sélectionné")
|
1268 |
+
)
|
1269 |
+
|
1270 |
+
######################################
|
1271 |
+
def load_selected_frame(selected_frame_idx):
|
1272 |
+
if not shared_results.get("video_frames"):
|
1273 |
+
raise gr.Error("Aucune vidéo chargée")
|
1274 |
+
|
1275 |
+
frame_pos, frame_img = shared_results["video_frames"][selected_frame_idx]
|
1276 |
+
|
1277 |
+
# Mettre à jour le frame courant dans les résultats partagés
|
1278 |
+
cap = cv2.VideoCapture(shared_results["video_path"])
|
1279 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
|
1280 |
+
ret, frame = cap.read()
|
1281 |
+
cap.release()
|
1282 |
+
|
1283 |
+
if not ret:
|
1284 |
+
raise gr.Error("Erreur de lecture du frame sélectionné")
|
1285 |
+
|
1286 |
+
# Convertir et préparer l'image
|
1287 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
1288 |
+
img_draw = img_rgb.copy()
|
1289 |
+
|
1290 |
+
# Mettre à jour les résultats partagés
|
1291 |
+
shared_results.update({
|
1292 |
+
"original_image": frame,
|
1293 |
+
"img_rgb": img_rgb,
|
1294 |
+
"img_draw": img_draw,
|
1295 |
+
"current_frame": frame,
|
1296 |
+
"corrected_orientation": False,
|
1297 |
+
"frame_count": frame_pos,
|
1298 |
+
"video_processing": True
|
1299 |
+
})
|
1300 |
+
|
1301 |
+
return (
|
1302 |
+
Image.fromarray(img_rgb),
|
1303 |
+
f"Frame {frame_pos} chargé - Prêt pour analyse",
|
1304 |
+
gr.Button(visible=True)
|
1305 |
+
)
|
1306 |
+
|
1307 |
+
########################
|
1308 |
+
# Nouveaux callbacks
|
1309 |
+
def toggle_time_range(choice):
|
1310 |
+
"""Afficher/masquer le champ personnalisé"""
|
1311 |
+
if choice == "Personnalisé...":
|
1312 |
+
return gr.Textbox(visible=True)
|
1313 |
+
return gr.Textbox(visible=False)
|
1314 |
+
|
1315 |
+
def verify_vehicle():
|
1316 |
+
"""Vérifier l'existence du véhicule"""
|
1317 |
+
if not shared_results["trocr_combined_text"]:
|
1318 |
+
raise gr.Error("Aucune plaque détectée")
|
1319 |
+
|
1320 |
+
plate_info = classify_plate(shared_results["trocr_combined_text"])
|
1321 |
+
if not plate_info:
|
1322 |
+
raise gr.Error("Plaque non valide")
|
1323 |
+
|
1324 |
+
exists, message = check_vehicle(plate_info['matricule_complet'])
|
1325 |
+
|
1326 |
+
if exists:
|
1327 |
+
allowed = "✅ ACCÈS AUTORISÉ" if is_access_allowed(plate_info['matricule_complet']) else "❌ ACCÈS REFUSÉ"
|
1328 |
+
return {
|
1329 |
+
access_output: f"{message}\n{allowed}",
|
1330 |
+
access_form: gr.update(visible=False),
|
1331 |
+
save_btn: gr.update(interactive=False)
|
1332 |
+
}
|
1333 |
+
else:
|
1334 |
+
return {
|
1335 |
+
access_output: message,
|
1336 |
+
access_form: gr.update(visible=True),
|
1337 |
+
save_btn: gr.update(interactive=True)
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
def save_vehicle_info(status, time_choice, custom_time_input):
|
1341 |
+
"""Enregistrer les informations du véhicule"""
|
1342 |
+
if not shared_results.get("classified_plate"):
|
1343 |
+
raise gr.Error("Aucune information de plaque disponible")
|
1344 |
+
|
1345 |
+
plate_info = shared_results["classified_plate"]
|
1346 |
+
|
1347 |
+
# Gestion du temps personnalisé
|
1348 |
+
if time_choice == "Personnalisé...":
|
1349 |
+
if not TIME_PATTERN.match(custom_time_input):
|
1350 |
+
raise gr.Error("Format horaire invalide. Utilisez HH:MM-HH:MM")
|
1351 |
+
time_range = custom_time_input
|
1352 |
+
else:
|
1353 |
+
time_range = time_choice
|
1354 |
+
|
1355 |
+
# Get brand and model, handling cases where they might not be available
|
1356 |
+
brand = shared_results.get("vehicle_brand", "Inconnu")
|
1357 |
+
model = shared_results.get("vehicle_model", "Inconnu")
|
1358 |
+
|
1359 |
+
# Sauvegarde
|
1360 |
+
success, message = save_vehicle(
|
1361 |
+
plate_info,
|
1362 |
+
shared_results.get("label_color", "Inconnu"),
|
1363 |
+
model,
|
1364 |
+
brand,
|
1365 |
+
status,
|
1366 |
+
time_range
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
if not success:
|
1370 |
+
raise gr.Error(message)
|
1371 |
+
|
1372 |
+
return {
|
1373 |
+
access_output: message,
|
1374 |
+
access_form: gr.update(visible=False),
|
1375 |
+
save_btn: gr.update(interactive=False)
|
1376 |
+
}
|
1377 |
+
|
1378 |
+
|
1379 |
+
|
1380 |
+
|
1381 |
+
# Connexion des boutons aux fonctions
|
1382 |
+
load_btn.click(
|
1383 |
+
fn=process_load,
|
1384 |
+
inputs=[input_type, file_input],
|
1385 |
+
outputs=[original_image, status_output, next_frame_btn]
|
1386 |
+
)
|
1387 |
+
################
|
1388 |
+
# Mettre à jour les connexions
|
1389 |
+
load_btn.click(
|
1390 |
+
fn=process_load,
|
1391 |
+
inputs=[input_type, file_input],
|
1392 |
+
outputs=[
|
1393 |
+
original_image,
|
1394 |
+
status_output,
|
1395 |
+
next_frame_btn,
|
1396 |
+
frame_gallery,
|
1397 |
+
frame_slider,
|
1398 |
+
load_frame_btn
|
1399 |
+
]
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
load_frame_btn.click(
|
1403 |
+
fn=load_selected_frame,
|
1404 |
+
inputs=[frame_slider],
|
1405 |
+
outputs=[original_image, status_output, next_frame_btn]
|
1406 |
+
)
|
1407 |
+
#####################
|
1408 |
+
|
1409 |
+
detect_vehicle_btn.click(
|
1410 |
+
fn=detect_vehicle,
|
1411 |
+
outputs=[status_output, processed_image]
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
detect_color_btn.click(
|
1415 |
+
fn=detect_color,
|
1416 |
+
outputs=[color_output, processed_image]
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
detect_orientation_btn.click(
|
1420 |
+
fn=detect_orientation,
|
1421 |
+
outputs=[orientation_output, processed_image]
|
1422 |
+
)
|
1423 |
+
|
1424 |
+
detect_logo_btn.click(
|
1425 |
+
fn=detect_logo_and_model,
|
1426 |
+
outputs=[logo_output, model_output, logo_recognition_output, processed_image, logo_image]
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
detect_plate_btn.click(
|
1430 |
+
fn=detect_plate,
|
1431 |
+
outputs=[processed_image, plate_image, plate_chars_image, plate_chars_list]
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
classify_plate_btn.click(
|
1435 |
+
fn=classify_plate_number,
|
1436 |
+
outputs=[
|
1437 |
+
plate_classification,
|
1438 |
+
vehicle_type_output,
|
1439 |
+
algerian_check_output,
|
1440 |
+
action_output
|
1441 |
+
]
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
next_frame_btn.click(
|
1445 |
+
fn=next_frame,
|
1446 |
+
outputs=[original_image, status_output,
|
1447 |
+
color_output, orientation_output,
|
1448 |
+
logo_output, model_output,
|
1449 |
+
plate_classification, vehicle_type_output]
|
1450 |
+
)
|
1451 |
+
|
1452 |
+
# Connecter les nouveaux composants
|
1453 |
+
time_range.change(
|
1454 |
+
fn=toggle_time_range,
|
1455 |
+
inputs=time_range,
|
1456 |
+
outputs=custom_time
|
1457 |
+
)
|
1458 |
+
|
1459 |
+
check_btn.click(
|
1460 |
+
fn=verify_vehicle,
|
1461 |
+
outputs=[access_output, access_form, save_btn]
|
1462 |
+
)
|
1463 |
+
|
1464 |
+
save_btn.click(
|
1465 |
+
fn=save_vehicle_info,
|
1466 |
+
inputs=[access_status, time_range, custom_time],
|
1467 |
+
outputs=[access_output, access_form, save_btn]
|
1468 |
+
)
|
1469 |
+
|
1470 |
+
# Lancer l'interface
|
1471 |
+
if __name__ == "__main__":
|
1472 |
+
init_database() # Créer la base SQLite si elle n'existe pas
|
1473 |
+
demo.launch()
|
car_color_classifier.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a9f7df0b7e5e9cbe3412b63f4becfd9ad46182dd5bfad264cce2dac14027909
|
3 |
+
size 39722836
|
car_logo_detection.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c551e8a144a5815126d6ad0ef0402c7447dd1189057332f9f14b477f689863fe
|
3 |
+
size 6229923
|
character_detetion.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0714aefd9836c39657ab6ffbc3bb2c2c2996859df3751cb2e68db94888cf242
|
3 |
+
size 18508694
|
chevrolet_model_final2.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9a6d701050d69d9d78b6749c38252581ba055d67c994059231ed19ee3b0b907
|
3 |
+
size 228495059
|
direction_best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de9fcc1fc76690223ee822cad480377c56b86ddb2f2d9fc5ea202743ff4d4339
|
3 |
+
size 6248867
|
logo_model_cnn.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d1fbac8a0b1b6a2072b7f8ab0752632265bec5d7020408de6adf08b26a3bebc
|
3 |
+
size 78362984
|
nissan_model_final2.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ccb665d88fb6f2a334d77745142756fa1d6a2ec026ff8caa137e1324ff3da83
|
3 |
+
size 228501211
|
plate_detection.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f02c9507b8a156ada378da1ad6b264d700ce58b594e31d39c8b032369748f29a
|
3 |
+
size 22498211
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics
|
3 |
+
opencv-python
|
4 |
+
numpy
|
5 |
+
Pillow
|
6 |
+
torch
|
7 |
+
transformers
|
8 |
+
tensorflow
|
vehicle_detection.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3fe9a41930fe10b103cffc95fe06d9ec309888adc16df901e1df9a26a9fe586
|
3 |
+
size 6252067
|
vehicules_database.db
ADDED
Binary file (16.4 kB). View file
|
|