Spaces:
Running
Running
Commit
·
1d924fc
1
Parent(s):
f64f7ab
whoops gotta add these back
Browse files- README.md +2 -2
- app/app.py +444 -0
- preprocessing/pre-processing.md +40 -0
- preprocessing/tpl.html +3 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: blue
|
| 6 |
sdk: streamlit
|
|
|
|
| 1 |
---
|
| 2 |
+
title: TPL
|
| 3 |
+
emoji: 🌳
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: blue
|
| 6 |
sdk: streamlit
|
app/app.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 3 |
+
# you may not use this file except in compliance with the License.
|
| 4 |
+
# You may obtain a copy of the License at
|
| 5 |
+
#
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
|
| 14 |
+
# +
|
| 15 |
+
import leafmap.foliumap as leafmap
|
| 16 |
+
import streamlit as st
|
| 17 |
+
from minio import Minio
|
| 18 |
+
import os
|
| 19 |
+
from datetime import timedelta
|
| 20 |
+
import pandas as pd
|
| 21 |
+
|
| 22 |
+
# Get signed URLs to access license-controlled layers
|
| 23 |
+
key = st.secrets["MINIO_KEY"]
|
| 24 |
+
secret = st.secrets["MINIO_SECRET"]
|
| 25 |
+
client = Minio("minio.carlboettiger.info", key, secret)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
pmtiles = client.get_presigned_url(
|
| 29 |
+
"GET",
|
| 30 |
+
"shared-tpl",
|
| 31 |
+
"tpl.pmtiles",
|
| 32 |
+
expires=timedelta(hours=2),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
parquet = client.get_presigned_url(
|
| 36 |
+
"GET",
|
| 37 |
+
"shared-tpl",
|
| 38 |
+
"tpl.parquet",
|
| 39 |
+
expires=timedelta(hours=2),
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
geojson = client.get_presigned_url(
|
| 43 |
+
"GET",
|
| 44 |
+
"shared-tpl",
|
| 45 |
+
"tpl.geojson",
|
| 46 |
+
expires=timedelta(hours=2),
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# -
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
basemaps = leafmap.basemaps.keys()
|
| 53 |
+
|
| 54 |
+
# +
|
| 55 |
+
|
| 56 |
+
## Protected Area polygon color codes
|
| 57 |
+
|
| 58 |
+
style_options = {
|
| 59 |
+
"Manager Type": {
|
| 60 |
+
'property': 'Manager_Type',
|
| 61 |
+
'type': 'categorical',
|
| 62 |
+
'stops': [
|
| 63 |
+
['FED', "darkblue"],
|
| 64 |
+
['STAT', "blue"],
|
| 65 |
+
['LOC', "lightblue"],
|
| 66 |
+
['DIST', "darkgreen"],
|
| 67 |
+
['UNK', "grey"],
|
| 68 |
+
['JNT', "green"],
|
| 69 |
+
['TRIB', "purple"],
|
| 70 |
+
['PVT', "darkred"],
|
| 71 |
+
['NGO', "orange"]
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
"Access": {
|
| 75 |
+
'property': 'Public_Access_Type',
|
| 76 |
+
'type': 'categorical',
|
| 77 |
+
'stops': [
|
| 78 |
+
['OA', "green"],
|
| 79 |
+
['XA', "red"],
|
| 80 |
+
['UK', "grey"],
|
| 81 |
+
['RA', "orange"]
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
"Purpose": {
|
| 85 |
+
'property': 'Purpose_Type',
|
| 86 |
+
'type': 'categorical',
|
| 87 |
+
'stops': [
|
| 88 |
+
['FOR', "green"],
|
| 89 |
+
['HIST', "red"],
|
| 90 |
+
['UNK', "grey"],
|
| 91 |
+
['OTH', "grey"],
|
| 92 |
+
['FARM', "yellow"],
|
| 93 |
+
['REC', "blue"],
|
| 94 |
+
['ENV', "purple"],
|
| 95 |
+
['SCE', "orange"],
|
| 96 |
+
['RAN', "pink"]
|
| 97 |
+
]
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
notused = {
|
| 104 |
+
"Amount": ["interpolate",
|
| 105 |
+
['exponential', 1],
|
| 106 |
+
["get", "Amount"],
|
| 107 |
+
0, "#FCE2DC",
|
| 108 |
+
34273487, "#F8C3BF",
|
| 109 |
+
68546973, "#F4A5A2",
|
| 110 |
+
102820460, "#F08785",
|
| 111 |
+
137093947, "#EB6968",
|
| 112 |
+
171367433, "#DB5157",
|
| 113 |
+
205640920, "#BE4152",
|
| 114 |
+
239914407, "#A0304C",
|
| 115 |
+
274187893, "#832047",
|
| 116 |
+
308461380, "#661042",
|
| 117 |
+
]
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
# +
|
| 121 |
+
st.set_page_config(layout="wide",
|
| 122 |
+
page_title="TPL Conservation Almanac",
|
| 123 |
+
page_icon=":globe:")
|
| 124 |
+
|
| 125 |
+
'''
|
| 126 |
+
# TPL Conservation Almanac
|
| 127 |
+
|
| 128 |
+
A data visualization tool built for the Trust for Public Land
|
| 129 |
+
|
| 130 |
+
'''
|
| 131 |
+
|
| 132 |
+
m = leafmap.Map(center=[35, -100], zoom=5, layers_control=True, fullscreen_control=True)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def pad_style(paint, alpha):
|
| 136 |
+
return {
|
| 137 |
+
"version": 8,
|
| 138 |
+
"sources": {
|
| 139 |
+
"source1": {
|
| 140 |
+
"type": "vector",
|
| 141 |
+
"url": "pmtiles://" + pmtiles,
|
| 142 |
+
"attribution": "TPL"}},
|
| 143 |
+
"layers": [{
|
| 144 |
+
"id": "TPL",
|
| 145 |
+
"source": "source1",
|
| 146 |
+
"source-layer": "tpl",
|
| 147 |
+
"type": "fill",
|
| 148 |
+
"paint": {
|
| 149 |
+
"fill-color": paint,
|
| 150 |
+
"fill-opacity": alpha
|
| 151 |
+
}
|
| 152 |
+
}]}
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
code_ex='''
|
| 157 |
+
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif",
|
| 158 |
+
palette="oranges", name="Cropland Expansion", transparent_bg=True, opacity = 0.7, zoom_to_layer=False)
|
| 159 |
+
'''
|
| 160 |
+
# -
|
| 161 |
+
## Map controls sidebar
|
| 162 |
+
with st.sidebar:
|
| 163 |
+
|
| 164 |
+
if st.toggle("Protected Areas", True):
|
| 165 |
+
alpha = st.slider("transparency", 0.0, 1.0, 0.5)
|
| 166 |
+
style_choice = st.radio("Color by:", style_options)
|
| 167 |
+
style = pad_style(style_options[style_choice], alpha)
|
| 168 |
+
m.add_pmtiles(pmtiles, name="Conservation Protected Areas", style=style, overlay=True, show=True, zoom_to_layer=False)
|
| 169 |
+
## Add legend based on selected style?
|
| 170 |
+
# m.add_legend(legend_dict=legend_dict)
|
| 171 |
+
|
| 172 |
+
b = st.selectbox("Basemap", basemaps)
|
| 173 |
+
m.add_basemap(b)
|
| 174 |
+
|
| 175 |
+
# And here we go!
|
| 176 |
+
m.to_streamlit(height=600)
|
| 177 |
+
|
| 178 |
+
st.divider()
|
| 179 |
+
|
| 180 |
+
import altair as alt
|
| 181 |
+
import ibis
|
| 182 |
+
from ibis import _
|
| 183 |
+
import ibis.selectors as s
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# +
|
| 187 |
+
@st.cache_resource
|
| 188 |
+
def tpl_database(parquet):
|
| 189 |
+
df = ibis.read_parquet(parquet)
|
| 190 |
+
return df
|
| 191 |
+
|
| 192 |
+
df = tpl_database(parquet)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
# +
|
| 196 |
+
@st.cache_data
|
| 197 |
+
def tpl_summary(_df):
|
| 198 |
+
summary = _df.group_by(_.Manager_Type).agg(Amount = _.Amount.sum())
|
| 199 |
+
public_dollars = round( summary.filter(_.Manager_Type.isin(["FED", "STAT", "LOC", "DIST"])).agg(total = _.Amount.sum()).to_pandas().values[0][0] )
|
| 200 |
+
private_dollars = round( summary.filter(_.Manager_Type.isin(["PVT", "NGO"])).agg(total = _.Amount.sum()).to_pandas().values[0][0] )
|
| 201 |
+
tribal_dollars = round( summary.filter(_.Manager_Type.isin(["TRIB"])).agg(total = _.Amount.sum()).to_pandas().values[0][0] )
|
| 202 |
+
total_dollars = round( summary.agg(total = _.Amount.sum()).to_pandas().values[0][0] )
|
| 203 |
+
return public_dollars, private_dollars, tribal_dollars, total_dollars
|
| 204 |
+
|
| 205 |
+
public_dollars, private_dollars, tribal_dollars, total_dollars = tpl_summary(df)
|
| 206 |
+
|
| 207 |
+
# +
|
| 208 |
+
# areas actively managed / owned / sponsored by TPL
|
| 209 |
+
# tpl = (df
|
| 210 |
+
# .filter(_.Sponsor_Name.lower().re_search("trust for public land") | _.Owner_Name.lower().re_search("trust for public land") | _.Manager_Name.lower().re_search("trust for public land"))
|
| 211 |
+
# .agg(Amount = _.Amount.sum(),
|
| 212 |
+
# area_hectares = _.Shape_Area.sum() / 10000)
|
| 213 |
+
# .order_by(_.Amount.desc())
|
| 214 |
+
# .to_pandas()
|
| 215 |
+
# )
|
| 216 |
+
# -
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# +
|
| 223 |
+
@st.cache_data
|
| 224 |
+
def calc_delta(_df):
|
| 225 |
+
deltas = (_df
|
| 226 |
+
.group_by(_.Manager_Type, _.Close_Year)
|
| 227 |
+
.agg(Amount = _.Amount.sum())
|
| 228 |
+
#.filter(_.Manager_Type.isin(["FED"]))
|
| 229 |
+
# .order_by(_.Close_Year)
|
| 230 |
+
.mutate(total = _.Amount.cumsum(order_by=_.Close_Year, group_by=_.Manager_Type))
|
| 231 |
+
.mutate(lag = _.total.lag(1))
|
| 232 |
+
.mutate(delta = (100*(_.total - _.lag) / _.total).round(2) )
|
| 233 |
+
.filter(_.Close_Year >=2019)
|
| 234 |
+
.select(_.Manager_Type, _.Close_Year, _.total, _.lag, _.delta)
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
public_delta = deltas.filter(_.Manager_Type.isin(["FED", "STAT", "LOC", "DIST"])).to_pandas().delta[0]
|
| 238 |
+
private_delta = deltas.filter(_.Manager_Type.isin(["PVT", "NGO"])).to_pandas().delta[0]
|
| 239 |
+
trib_delta = deltas.filter(_.Manager_Type=="TRIB").to_pandas().delta[0]
|
| 240 |
+
|
| 241 |
+
#total_dollars = round( summary.agg(total = _.Amount.sum()).to_pandas().values[0][0] )
|
| 242 |
+
|
| 243 |
+
return public_delta, private_delta, trib_delta
|
| 244 |
+
|
| 245 |
+
public_delta, private_delta, trib_delta = calc_delta(df)
|
| 246 |
+
# -
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
with st.container():
|
| 250 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 251 |
+
col1.metric(label=f"Public", value=f"${public_dollars:,}", delta = f"{public_delta:}%")
|
| 252 |
+
col2.metric(label=f"Private", value=f"${private_dollars:,}", delta = f"{private_delta:}%")
|
| 253 |
+
col3.metric(label=f"Tribal", value=f"${tribal_dollars:,}", delta = f"{trib_delta:}%")
|
| 254 |
+
col4.metric(label=f"Total", value=f"${total_dollars:,}")
|
| 255 |
+
|
| 256 |
+
selected = style_options[style_choice]
|
| 257 |
+
column = selected["property"]
|
| 258 |
+
colors = dict(selected["stops"])
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# +
|
| 262 |
+
@st.cache_data
|
| 263 |
+
def get_area_totals(_df, column):
|
| 264 |
+
return _df.group_by(_[column]).agg(area = _.Shape_Area.sum() / (100*100)).to_pandas()
|
| 265 |
+
area_totals = get_area_totals(df,column)
|
| 266 |
+
|
| 267 |
+
@st.cache_data
|
| 268 |
+
def bar(area_totals, column):
|
| 269 |
+
plt = alt.Chart(area_totals).mark_bar().encode(
|
| 270 |
+
x=column,
|
| 271 |
+
y=alt.Y("area").scale(type="log"),
|
| 272 |
+
color=alt.Color(column).scale(domain = list(colors.keys()), range = list(colors.values()))
|
| 273 |
+
).properties(height=350)
|
| 274 |
+
return plt
|
| 275 |
+
#bar
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# +
|
| 279 |
+
|
| 280 |
+
@st.cache_data
|
| 281 |
+
def calc_timeseries(_df, column):
|
| 282 |
+
timeseries = (
|
| 283 |
+
_df
|
| 284 |
+
.filter(~_.Close_Year.isnull())
|
| 285 |
+
.filter(_.Close_Year > 0)
|
| 286 |
+
.group_by([_.Close_Year, _[column]])
|
| 287 |
+
.agg(Amount = _.Amount.sum())
|
| 288 |
+
.mutate(Close_Year = _.Close_Year.cast("int"),
|
| 289 |
+
Amount = _.Amount.cumsum(group_by=_[column], order_by=_.Close_Year))
|
| 290 |
+
|
| 291 |
+
.to_pandas()
|
| 292 |
+
)
|
| 293 |
+
return timeseries
|
| 294 |
+
timeseries = calc_timeseries(df, column)
|
| 295 |
+
|
| 296 |
+
@st.cache_data
|
| 297 |
+
def chart_time(timeseries, column):
|
| 298 |
+
# use the colors
|
| 299 |
+
plt = alt.Chart(timeseries).mark_line().encode(
|
| 300 |
+
x='Close_Year:O',
|
| 301 |
+
y = alt.Y('Amount:Q'),
|
| 302 |
+
color=alt.Color(column).scale(domain = list(colors.keys()), range = list(colors.values()))
|
| 303 |
+
).properties(height=350)
|
| 304 |
+
return plt
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# +
|
| 308 |
+
st.divider()
|
| 309 |
+
|
| 310 |
+
with st.container():
|
| 311 |
+
plt1, plt2 = st.columns(2)
|
| 312 |
+
|
| 313 |
+
with plt1:
|
| 314 |
+
"Total Area protected (hectares):"
|
| 315 |
+
st.altair_chart(bar(area_totals, column))
|
| 316 |
+
with plt2:
|
| 317 |
+
"Annual investment ($) in protected area"
|
| 318 |
+
st.altair_chart(chart_time(timeseries, column))
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
# +
|
| 322 |
+
|
| 323 |
+
import leafmap.deckgl as deckgl
|
| 324 |
+
from shapely import wkb
|
| 325 |
+
import geopandas as gpd
|
| 326 |
+
|
| 327 |
+
@st.cache_data
|
| 328 |
+
def leaf_map(gdf):
|
| 329 |
+
m = deckgl.Map(center=[35, -100], zoom=4)
|
| 330 |
+
m.add_gdf(gdf)
|
| 331 |
+
return m.to_streamlit()
|
| 332 |
+
|
| 333 |
+
@st.cache_data
|
| 334 |
+
def crs():
|
| 335 |
+
conn = ibis.duckdb.connect()
|
| 336 |
+
crs = conn.read_geo("static/test.geojson").crs
|
| 337 |
+
return crs
|
| 338 |
+
|
| 339 |
+
@st.cache_data
|
| 340 |
+
def query_database(response):
|
| 341 |
+
z = con.execute(response).fetchall()
|
| 342 |
+
return pd.DataFrame(z).head(250)
|
| 343 |
+
|
| 344 |
+
@st.cache_data
|
| 345 |
+
def get_geom(tbl):
|
| 346 |
+
#tbl['geometry'] = tbl['geometry'].apply(wkb.loads)
|
| 347 |
+
gdf = gpd.GeoDataFrame(tbl, geometry='geometry')
|
| 348 |
+
gdf.to_crs({'init': 'epsg:4326'})
|
| 349 |
+
|
| 350 |
+
return gdf
|
| 351 |
+
|
| 352 |
+
## Database connection, reading directly from remote parquet file
|
| 353 |
+
from sqlalchemy import create_engine
|
| 354 |
+
from langchain.sql_database import SQLDatabase
|
| 355 |
+
db_uri = "duckdb:///my.duckdb"
|
| 356 |
+
engine = create_engine(db_uri) #connect_args={'read_only': True})
|
| 357 |
+
con = engine.connect()
|
| 358 |
+
con.execute("install spatial; load spatial;")
|
| 359 |
+
con.execute(f"create or replace table protected as select *, st_geomfromwkb(geom) as geometry from read_parquet('{parquet}');").fetchall()
|
| 360 |
+
db = SQLDatabase(engine, view_support=True)
|
| 361 |
+
|
| 362 |
+
from langchain_openai import ChatOpenAI
|
| 363 |
+
from langchain_community.llms import Ollama
|
| 364 |
+
models = {
|
| 365 |
+
"chatgpt3.5": ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=st.secrets["OPENAI_API_KEY"]),
|
| 366 |
+
"chatgpt-o4": ChatOpenAI(model="gpt-4o", temperature=0, api_key=st.secrets["OPENAI_API_KEY"]),
|
| 367 |
+
}
|
| 368 |
+
other_models ={
|
| 369 |
+
"duckdb-nsql": Ollama(model="duckdb-nsql", temperature=0),
|
| 370 |
+
"sqlcoder": Ollama(model="mannix/defog-llama3-sqlcoder-8b", temperature=0),
|
| 371 |
+
"mixtral": Ollama(model="mixtral", temperature=0),
|
| 372 |
+
"wizardlm2": Ollama(model="wizardlm2", temperature=0),
|
| 373 |
+
"sqlcoder": Ollama(model="sqlcoder", temperature=0),
|
| 374 |
+
"zephyr": Ollama(model="zephyr", temperature=0),
|
| 375 |
+
"llama3": Ollama(model="llama3", temperature=0),
|
| 376 |
+
}
|
| 377 |
+
|
| 378 |
+
map_tool = {"leafmap": leaf_map,
|
| 379 |
+
# "deckgl": deck_map
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
with st.sidebar:
|
| 384 |
+
st.divider()
|
| 385 |
+
choice = st.radio("Select an LLM:", models)
|
| 386 |
+
llm = models[choice]
|
| 387 |
+
map_choice = st.radio("Select mapping tool", map_tool)
|
| 388 |
+
mapper = map_tool[map_choice]
|
| 389 |
+
|
| 390 |
+
## A SQL Chain
|
| 391 |
+
from langchain.chains import create_sql_query_chain
|
| 392 |
+
chain = create_sql_query_chain(llm, db)
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
st.divider()
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
@st.cache_data
|
| 399 |
+
def convert_df(df):
|
| 400 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 401 |
+
return df.to_csv().encode("utf-8")
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
with st.container():
|
| 405 |
+
|
| 406 |
+
'''
|
| 407 |
+
Ask a question! Some examples:
|
| 408 |
+
|
| 409 |
+
- What is are most expensive protected sites?
|
| 410 |
+
- Which states have the highest average cost per acre?
|
| 411 |
+
- Which sites are owned, managed or sponsored by the Trust for Public Land? include all columns
|
| 412 |
+
'''
|
| 413 |
+
|
| 414 |
+
chatbox = st.container()
|
| 415 |
+
with chatbox:
|
| 416 |
+
if prompt := st.chat_input(key="chain"):
|
| 417 |
+
st.chat_message("user").write(prompt)
|
| 418 |
+
with st.chat_message("assistant"):
|
| 419 |
+
response = chain.invoke({"question": prompt + " No limit, use fuzzy matching when asked to match specific names."})
|
| 420 |
+
st.write(response)
|
| 421 |
+
tbl = query_database(response)
|
| 422 |
+
#if 'geometry' in tbl:
|
| 423 |
+
# gdf = get_geom(tbl)
|
| 424 |
+
# mapper(gdf)
|
| 425 |
+
# n = len(gdf)
|
| 426 |
+
# st.write(f"matching features: {n}")
|
| 427 |
+
st.dataframe(tbl)
|
| 428 |
+
csv = convert_df(tbl)
|
| 429 |
+
st.download_button(label="Download data as CSV",
|
| 430 |
+
data=csv,
|
| 431 |
+
file_name="results.csv",
|
| 432 |
+
mime="text/csv")
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
# +
|
| 436 |
+
st.divider()
|
| 437 |
+
|
| 438 |
+
st.markdown('''
|
| 439 |
+
|
| 440 |
+
## Data Sources
|
| 441 |
+
|
| 442 |
+
PRIVATE DRAFT. Developed at UC Berkeley. All data copyright to Trust for Public Land. See <https://conservationalmanac.org/> for details.
|
| 443 |
+
|
| 444 |
+
''')
|
preprocessing/pre-processing.md
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
jupytext:
|
| 3 |
+
formats: md:myst
|
| 4 |
+
text_representation:
|
| 5 |
+
extension: .md
|
| 6 |
+
format_name: myst
|
| 7 |
+
format_version: 0.13
|
| 8 |
+
jupytext_version: 1.16.2
|
| 9 |
+
kernelspec:
|
| 10 |
+
display_name: Python 3 (ipykernel)
|
| 11 |
+
language: python
|
| 12 |
+
name: python3
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
```{code-cell} ipython3
|
| 16 |
+
import ibis
|
| 17 |
+
from ibis import _
|
| 18 |
+
from minio import Minio
|
| 19 |
+
import streamlit as st
|
| 20 |
+
from datetime import timedelta
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
```{code-cell} ipython3
|
| 24 |
+
# Get signed URLs to access license-controlled layers
|
| 25 |
+
key = st.secrets["MINIO_KEY"]
|
| 26 |
+
secret = st.secrets["MINIO_SECRET"]
|
| 27 |
+
client = Minio("minio.carlboettiger.info", key, secret)
|
| 28 |
+
|
| 29 |
+
parquet = client.get_presigned_url(
|
| 30 |
+
"GET",
|
| 31 |
+
"shared-tpl",
|
| 32 |
+
"tpl.parquet",
|
| 33 |
+
expires=timedelta(hours=2),
|
| 34 |
+
)
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
```{code-cell} ipython3
|
| 38 |
+
con = ibis.duckdb.connect()
|
| 39 |
+
df = con.read_parquet(parquet)
|
| 40 |
+
```
|
preprocessing/tpl.html
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f73c60799960ab27820166b0cf19de6e29b1b28e19b6d3a8568553f6dce201ac
|
| 3 |
+
size 118505121
|