Spaces:
Running
Running
library(dplyr) | |
library(duckdbfs) | |
library(ggplot2) | |
library(mapgl) | |
library(glue) | |
load_h3() | |
load_spatial() | |
duckdbfs::duckdb_secrets() | |
inat = open_dataset("s3://public-inat/rangemaps") | |
# Access SVI | |
#svi = open_dataset("https://minio.carlboettiger.info/public-social-vulnerability/2022/SVI2022_US_tract.parquet") | |
tracts = open_dataset("https://minio.carlboettiger.info/public-social-vulnerability/2022-tracts-h3-z8.parquet") # Access CalEnviroScreen | |
# ces = open_dataset("https://minio.carlboettiger.info/public-calenviroscreen/ces_2021.parquet", format="parquet") | |
# Filter GBIF to our area-of-interest (h-index) and species of interest | |
ca = tracts |> | |
filter(STATE == "California") |> | |
mutate(h3 = h3_cell_to_parent(h8, 3L)) |> | |
mutate(h3 = tolower(as.character(h3))) | |
ca |> inner_join(inat, by = "h3") |> count(STATE, COUNTY, FIPS, h8) | |
bird_counts = sf_birds |> | |
count(FIPS, geom) |> | |
mutate(richness = n / {total}) | |
ces_poverty = ces |> select("Poverty", "FIPS") | |
combined <- svi |> | |
select("RPL_THEMES", "FIPS") |> filter(RPL_THEMES > 0) |> | |
inner_join(bird_counts, "FIPS") |> | |
inner_join(ces_poverty, "FIPS") |> | |
mutate(svi_bin = cut(RPL_THEMES, breaks = c(0, .25, .50, .75, 1), | |
labels = c("Q1", "Q2", "Q3", "Q4"))) |> | |
mutate(poverty_bin = cut(Poverty, breaks = c(0, 25, 50, 75, 100), | |
labels = c("0-25", "25-50", "50-75", "75-100"))) | |