cboettig's picture
use subset
a6ad9de
raw
history blame
9.19 kB
library(shiny)
library(bslib)
library(htmltools)
library(fontawesome)
library(bsicons)
library(glue)
library(sf)
library(duckdb.agent)
library(duckdbfs)
library(dplyr)
library(ellmer)
library(mapgl)
library(digest)
library(stringr)
library(shinybusy)
# initialize a disk-backed database for the session
duckdbfs::close_connection()
duckdbfs::cached_connection(tempfile())
duckdbfs::load_h3()
duckdbfs::load_spatial()
css <-
HTML(paste0("<link rel='stylesheet' type='text/css' ",
"href='https://demos.creative-tim.com/",
"material-dashboard/assets/css/",
"material-dashboard.min.css?v=3.2.0'>"))
# Define the UI
ui <- page_sidebar(
fillable = FALSE, # do not squeeze to vertical screen space
tags$head(css),
titlePanel("Demo App"),
shinybusy::add_busy_spinner(),
markdown("
Select a desired area with the draw tools on the map, using the search bar if desired.
Then hit **Set Area of Interest** to select.
Then, enter your query in the text box below the map to count occurrences of your specified taxonomic group.
Use the airplane button to send your query. The computation may take a few minutes depending on the size and scale of
the search.
"),
p("
Scroll to zoom, ctrl+click to pitch and rotate. Hitting the area button with no selection to include the entire map.
"),
layout_columns(
card(maplibreOutput("map")),
div(actionButton("get_features", "Set Area Of Interest", icon = icon("object-group"),
class = "btn-primary align-bottom")),
col_widths = c(11,1)
),
card(
layout_columns(
textInput("chat",
label = NULL,
"show all bird occurrences at zoom level 6",
width = "100%"),
div(
actionButton("user_msg", "", icon = icon("paper-plane"),
class = "btn-primary btn-sm align-bottom"),
class = "align-text-bottom"),
col_widths = c(11, 1),
fill = FALSE
),
),
textOutput("agent"),
sidebar = sidebar(
card(fill = TRUE,
card_header("Selected area:"),
verbatimTextOutput("feature_output")
),
selectInput(
"select",
"Select an LLM:",
list("LLama3" = "llama3",
#"OLMO2 (AllenAI)" = "olmo",
"Gorilla (UC Berkeley)" = "gorilla"
)
),
card(fill = TRUE,
card_header(fa("robot"), textOutput("model", inline = TRUE)),
accordion(
open = TRUE,
accordion_panel(
HTML("<span, class='text-info'>Show SQL query</span>"),
icon = fa("terminal"),
verbatimTextOutput("sql_code")
),
accordion_panel(
title = HTML("<span, class='text-info'>Explain query</span>"),
icon = fa("user", prefer_type = "solid"),
textOutput("explanation")
)
)
),
card(
card_header(bs_icon("github"), "Source code:"),
a(href = "https://github.com/boettiger-lab/biodiversity-justice",
"https://github.com/boettiger-lab/biodiversity-justice"))
),
theme = bs_theme(version = "5")
)
duckdb_secrets(Sys.getenv("MINIO_KEY"),
Sys.getenv("MINIO_SECRET"),
"minio.carlboettiger.info")
get_h3index <- function(shape, zoom = 0L, precision = 6L) {
tmp <- tempfile(fileext = ".fgb")
shape |> st_transform(4326) |> write_sf(tmp, append = FALSE)
zoom <- as.integer(zoom)
# consider auto-retry at higher precision if subset is empty.
precision <- as.integer(precision)
subset <- open_dataset(tmp) |>
mutate(poly = array_extract(unnest(st_dump(geom)),"geom"),
hexid = h3_polygon_wkt_to_cells(poly,{precision}),
hexid = unnest(hexid)
) |>
mutate(h0 = h3_h3_to_string( h3_cell_to_parent(hexid, {zoom})),
hexid = h3_h3_to_string (hexid) ) |>
select(h0) |>
distinct() |>
pull(h0)
toupper(subset)
}
# Define the server
server <- function(input, output, session) {
output$map <- renderMaplibre({
m <- maplibre(center = c(-110, 38), zoom = 2, pitch = 0, maxZoom=9) |>
add_draw_control() |>
add_geocoder_control()
m
})
observeEvent(input$get_features, {
bounds <- ""
aoi_info <- NULL
drawn_features <- get_drawn_features(mapboxgl_proxy("map"))
if(nrow(drawn_features) > 0) {
bounds <- st_bbox(drawn_features)
# print(bounds)
output$feature_output <- renderPrint({
print(bounds)
})
attach(as.list(bounds))
subset <- get_h3index(drawn_features)
urls <- paste0("https://minio.carlboettiger.info/public-gbif/hex/h0=", subset, "/part0.parquet")
gbif <- open_dataset(urls, tblname = "gbif")
gbif |>
dplyr::filter(between(decimallatitude, ymin, ymax),
between(decimallongitude, xmin, xmax)) |>
as_view("gbif_aoi")
}
observeEvent(input$user_msg, {
system_prompt = create_prompt(additional_instructions =
"Note that the columns h1, h2, h3, through h11 contains a geohash representing a H3 hexagon index.
Higher numbers indicate higher zoom resolution (smaller hexes)
Always aggregate results to count the number of rows matching
the query to the desired hexagon. Always name the count column 'count'.
Remember to group by hexagon level to aggregate!
Always rename the chosen hexagon column as 'h3id' in your final answer.
Always use table notation like 'gbif.order' to specify column names.
Be sure to generate fully valid SQL. Check your SQL for possible errors.
Do not use the 'scientificname' column! Instead, filter specific species using the
binomial name as the 'species' column.
Always use the table 'gbif_aoi' rather than 'gbif' table if both are present.
IMPORTANT: return raw JSON only, do not decorate your reply with markdown code syntax.
")
agent <- ellmer::chat_vllm(
base_url = "https://llm.cirrus.carlboettiger.info/v1/",
model = "kosbu/Llama-3.3-70B-Instruct-AWQ",
api_key = Sys.getenv("CIRRUS_LLM_KEY"),
system_prompt = system_prompt,
api_args = list(temperature = 0)
)
print("Agent thinking...")
stream <- agent$chat(input$chat)
# Parse response
response <- jsonlite::fromJSON(stream)
if ("query" %in% names(response)) {
output$sql_code <- renderText(str_wrap(response$query, width = 60))
output$explanation <- renderText(response$explanation)
# clear agent memory
agent$set_turns(NULL)
} else {
output$agent <- renderText(response$agent)
}
# cache the query
query_id <- digest::digest(paste(response$query, bounds, collapse=""))
data_url <- glue::glue("https://minio.carlboettiger.info/public-data/cache/{query_id}.h3j")
# use tempfile. we could use database tempdir
cache_parquet <- tempfile(glue("{query_id}"), fileext = ".parquet")
# compute if not yet in chache
status <- httr::status_code(httr::HEAD(data_url))
if(status == 404) {
print("Computing...")
time <- bench::bench_time({
agent_query(stream) |>
mutate(log_count = log(count)) |>
write_dataset(cache_parquet)
})
print(time)
}
cached_data <- open_dataset(cache_parquet)
# so we can scale color and height to max value
biggest <-
cached_data |>
summarise(max = max(log_count)) |>
pull(max) |>
first()
# so we can zoom to the selected data (choose random point)
aoi_info <- cached_data |>
head(1) |>
mutate(zoom = h3_get_resolution(h3id),
lat = h3_cell_to_lat(h3id),
lng = h3_cell_to_lng(h3id)) |>
collect()
# draw on map
h3j <- glue("s3://public-data/cache/{query_id}.h3j")
cached_data |> to_h3j(h3j)
# adjust v-scale based on zoom:
vscale <- 7000 / aoi_info$zoom
# override previous map with drawn map
# we should use set_h3j_source and set_layer on maplibre_proxy instead.
output$map <- renderMaplibre({
m <- maplibre(center=c(-110, 38), zoom = 1, pitch = 0, maxZoom = 11) |>
add_h3j_source("h3j_source",
url = data_url) |>
add_fill_extrusion_layer(
id = "h3j_layer",
source = "h3j_source",
tooltip = "count",
fill_extrusion_color = interpolate(
column = "log_count",
values = c(0, biggest),
stops = c("#430254", "#f83c70")
),
fill_extrusion_height = list(
"interpolate",
list("linear"),
list("zoom"),
0, 0, biggest,
list("*", vscale, list("get", "log_count"))
),
fill_extrusion_opacity = 0.7
)
if (!is.null(aoi_info)) {
m <- m |> fly_to(c(aoi_info$lng, aoi_info$lat), zoom = (aoi_info$zoom - 1))
}
m
}) # close renderMaplibre
}) # close observeEvent->get_features
}) # close observeEvent->user_msg
}
# Run the app
shinyApp(ui = ui, server = server)