Spaces:
Sleeping
Sleeping
File size: 9,751 Bytes
14124c0 5a7aca2 14124c0 c2fd183 14124c0 c2fd183 c399c9b c2fd183 5a7aca2 7446924 14124c0 c399c9b 14124c0 c2fd183 7446924 c2fd183 7446924 c2fd183 338ca35 c2fd183 14124c0 c399c9b c2fd183 c399c9b c2fd183 c399c9b c2fd183 c399c9b c2fd183 14124c0 d2d3b8d c399c9b 14124c0 c2fd183 d2d3b8d f942fde d2d3b8d c2fd183 7446924 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 a6ad9de 5a7aca2 a6ad9de 14124c0 5a7aca2 c2fd183 f942fde c2fd183 7446924 f942fde c2fd183 5a7aca2 f942fde c399c9b f942fde 14124c0 5a7aca2 14124c0 a6ad9de 5a7aca2 f942fde 5a7aca2 a6ad9de 5a7aca2 14124c0 5a7aca2 c399c9b 32deb59 c399c9b 5a7aca2 14124c0 f942fde 5a7aca2 f942fde 5a7aca2 f942fde 14124c0 5a7aca2 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 5a7aca2 7446924 c2fd183 5a7aca2 c2fd183 7446924 5a7aca2 7446924 c2fd183 7446924 32deb59 7446924 c2fd183 7446924 c2fd183 32deb59 338ca35 32deb59 c2fd183 7446924 c2fd183 f942fde c2fd183 7446924 c2fd183 7446924 32deb59 c2fd183 7446924 c2fd183 14124c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
library(shiny)
library(bslib)
library(htmltools)
library(fontawesome)
library(bsicons)
library(bench)
library(glue)
library(sf)
library(duckdb.agent)
library(duckdbfs)
library(dplyr)
library(ellmer)
library(mapgl)
library(digest)
library(stringr)
library(shinybusy)
source("utils.R")
duckdbfs::load_spatial()
css <-
HTML(paste0("<link rel='stylesheet' type='text/css' ",
"href='https://demos.creative-tim.com/",
"material-dashboard/assets/css/",
"material-dashboard.min.css?v=3.2.0'>"))
# Define the UI
ui <- page_sidebar(
fillable = FALSE, # do not squeeze to vertical screen space
tags$head(css),
titlePanel("Demo App"),
shinybusy::add_busy_spinner(),
markdown("
Select a desired area with the draw tools on the map, using the search bar if desired.
Then hit **Set Area of Interest** to select.
Then, enter your query in the text box below the map to count occurrences of your specified taxonomic group.
Use the airplane button to send your query. The computation may take a few minutes depending on the size and scale of
the search.
"),
p("
Scroll to zoom, ctrl+click to pitch and rotate. Hitting the area button with no selection to include the entire map.
"),
layout_columns(
card(maplibreOutput("map", , height = "600px")),
div(actionButton("get_features", "Set Area Of Interest", icon = icon("object-group"),
class = "btn-primary align-bottom")),
col_widths = c(11,1)
),
card(
layout_columns(
textInput("chat",
label = NULL,
"show all bird occurrences at zoom level 6",
width = "100%"),
div(
actionButton("user_msg", "", icon = icon("paper-plane"),
class = "btn-primary btn-sm align-bottom"),
class = "align-text-bottom"),
col_widths = c(11, 1),
fill = FALSE
),
),
textOutput("agent"),
sidebar = sidebar(
card(fill = TRUE,
card_header("Selected area:"),
verbatimTextOutput("feature_output")
),
selectInput(
"select",
"Select an LLM:",
list("Llama3.3-cirrus" = "Llama3.3-cirrus")
),
card(fill = TRUE,
card_header(fa("robot"), textOutput("model", inline = TRUE)),
accordion(
open = TRUE,
accordion_panel(
HTML("<span, class='text-info'>Show SQL query</span>"),
icon = fa("terminal"),
verbatimTextOutput("sql_code")
),
accordion_panel(
title = HTML("<span, class='text-info'>Explain query</span>"),
icon = fa("user", prefer_type = "solid"),
textOutput("explanation")
)
)
),
card(
card_header(bs_icon("github"), "Source code:"),
a(href = "https://github.com/boettiger-lab/biodiversity-justice",
"https://github.com/boettiger-lab/biodiversity-justice"))
),
theme = bs_theme(version = "5")
)
duckdb_secrets(Sys.getenv("MINIO_KEY"),
Sys.getenv("MINIO_SECRET"),
"minio.carlboettiger.info")
# system prompt generation is slow, do only once??
system_prompt = create_prompt(additional_instructions =
"Note that the columns h1, h2, h3, through h11 contains a geohash representing a H3 hexagon index.
Higher numbers indicate higher zoom resolution (smaller hexes)
Always aggregate results to count the number of rows matching
the query to the desired hexagon. Always name the count column 'count'.
Remember to group by hexagon level to aggregate!
Always rename the chosen hexagon column as 'h3id' in your final answer.
Only select the h3id and count in your final answer.
Examples:
user: 'show all bird occurrences at zoom level 6'
your reply:
{
'query': 'CREATE OR REPLACE VIEW bird_occurrences_h6 AS SELECT gbif.h6 AS h3id, COUNT(*) AS count FROM gbif WHERE gbif.class = 'Aves' GROUP BY gbif.h6',
'table_name': 'bird_occurrences_h6',
'explanation': 'This query creates a view that shows the count of bird occurrences at zoom level 6. It selects the h6 column as the hexagon id, counts the number of rows for each hexagon, and groups the results by the h6 column.'
}
Refer to the full table by its table name as given above.
Be sure to list column names
Be sure to generate fully valid SQL. Check your SQL for possible errors.
Do not use the 'scientificname' column! Instead, filter specific species using the
binomial name as the 'species' column.
IMPORTANT: return raw JSON only, do not decorate your reply with markdown code syntax.
")
# Define the server
server <- function(input, output, session) {
# first we draw the map with geosearch and draw controls.
output$map <- renderMaplibre({
m <- maplibre(center = c(-110, 38), zoom = 2, pitch = 0, maxZoom = 12) |>
add_draw_control() |>
add_geocoder_control()
m
})
# React to user's polygon
observeEvent(input$get_features, {
bounds <- ""
aoi_info <- NULL
drawn_features <- get_drawn_features(mapboxgl_proxy("map"))
if(nrow(drawn_features) > 0) {
aoi <- as_dataset.sf(drawn_features)
h3_aoi <- get_h3_aoi(aoi)
subset <- h3_aoi |> distinct(h0) |> pull(h0)
print(h3_aoi)
urls <- paste0("https://minio.carlboettiger.info/public-gbif/hex/h0=", subset, "/part0.parquet")
gbif <- open_dataset(urls, tblname = "gbif")
# would be better to spatial join
bounds <- st_bbox(drawn_features)
# timer <- bench::bench_time({
# xmin <- bounds[1]; ymin <- bounds[2]; xmax <- bounds[3]; ymax <- bounds[4]
# open_dataset(urls, tblname = "gbif") |>
# #filter(between(decimallongitude, xmin, xmax), between(decimallatitude, ymin, ymax)) |>
# mutate(geom = st_geomfromwkb(geom)) |> spatial_join(aoi) |>
# as_view("gbif_aoi")
# })
# print(timer)
output$feature_output <- renderPrint(print(bounds))
}
observeEvent(input$user_msg, {
model <- reactive(input$select)()
if (grepl("cirrus", model)) {
agent <- ellmer::chat_vllm(
base_url = "https://llm.cirrus.carlboettiger.info/v1/",
model = "kosbu/Llama-3.3-70B-Instruct-AWQ",
api_key = Sys.getenv("CIRRUS_LLM_KEY"),
system_prompt = system_prompt,
api_args = list(temperature = 0)
)
} else {
agent <- ellmer::chat_vllm( # NRP models have too small a context window for useful interaction
base_url = "https://llm.nrp-nautilus.io/",
model = model,
api_key = Sys.getenv("NRP_API_KEY"),
system_prompt = system_prompt,
api_args = list(temperature = 0)
)
}
print("Agent thinking...")
stream <- agent$chat(input$chat)
# Parse response
response <- jsonlite::fromJSON(stream)
if ("query" %in% names(response)) {
output$sql_code <- renderText(str_wrap(response$query, width = 60))
output$explanation <- renderText(response$explanation)
# clear agent memory
agent$set_turns(NULL)
} else {
output$agent <- renderText(response$agent)
}
# cache the query
query_id <- digest::digest(paste(response$query, bounds, collapse=""))
data_url <- glue::glue("https://minio.carlboettiger.info/public-data/cache/{query_id}.h3j")
# use tempfile as cache. we could use database tempdir
cache_parquet <- tempfile(glue("{query_id}"), fileext = ".parquet")
# compute if not yet in cache
status <- httr::status_code(httr::HEAD(data_url))
if(status == 404) {
print("Computing...")
time <- bench::bench_time({
agent_query(stream) |>
hex_join(h3_aoi) |>
mutate(log_count = log(count)) |>
write_dataset(cache_parquet)
})
print(time)
}
cached_data <- open_dataset(cache_parquet)
# so we can scale color and height to max value
biggest <-
cached_data |>
summarise(max = max(log_count)) |>
pull(max) |>
first()
# so we can zoom to the selected data (choose random point)
aoi_info <- cached_data |>
head(1) |>
mutate(zoom = h3_get_resolution(h3id),
lat = h3_cell_to_lat(h3id),
lng = h3_cell_to_lng(h3id)) |>
collect()
# draw on map
h3j <- glue("s3://public-data/cache/{query_id}.h3j")
cached_data |> to_h3j(h3j)
# adjust v-scale based on zoom:
vscale <- 10000 / aoi_info$zoom
# override previous map with drawn map
# we should use set_h3j_source and set_layer on maplibre_proxy instead.
output$map <- renderMaplibre({
m <- maplibre(center=c(-110, 38), zoom = 1, pitch = 0, maxZoom = 12) |>
add_h3j_source("h3j_source",
url = data_url) |>
add_fill_extrusion_layer(
id = "h3j_layer",
source = "h3j_source",
tooltip = "count",
fill_extrusion_color = interpolate(
column = "log_count",
values = c(0, biggest),
stops = c("#430254", "#f83c70")
),
fill_extrusion_height = list(
"interpolate",
list("linear"),
list("zoom"),
0, 0, biggest,
list("*", vscale, list("get", "log_count"))
),
fill_extrusion_opacity = 0.7
)
if (!is.null(aoi_info)) {
m <- m |> fly_to(c(aoi_info$lng, aoi_info$lat), zoom = (aoi_info$zoom - 1))
}
m
}) # close renderMaplibre
}) # close observeEvent->get_features
}) # close observeEvent->user_msg
}
# Run the app
shinyApp(ui = ui, server = server) |