Spaces:
Sleeping
Sleeping
File size: 8,139 Bytes
14124c0 c2fd183 14124c0 c2fd183 c399c9b c2fd183 7446924 c2fd183 7446924 14124c0 c399c9b 14124c0 c2fd183 7446924 c2fd183 7446924 c2fd183 14124c0 c399c9b c2fd183 c399c9b c2fd183 c399c9b c2fd183 c399c9b c2fd183 14124c0 d2d3b8d c399c9b 14124c0 c2fd183 d2d3b8d c2fd183 7446924 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c399c9b c2fd183 14124c0 c2fd183 14124c0 c399c9b c2fd183 7446924 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 c399c9b c2fd183 c399c9b c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 14124c0 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 7446924 c2fd183 14124c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
library(shiny)
library(bslib)
library(htmltools)
library(fontawesome)
library(bsicons)
library(glue)
library(sf)
library(duckdb.agent)
library(duckdbfs)
library(dplyr)
library(ellmer)
library(mapgl)
library(digest)
library(stringr)
library(shinybusy)
# initialize a disk-backed database for the session
duckdbfs::close_connection()
duckdbfs::cached_connection(tempfile())
duckdbfs::load_h3()
duckdbfs::load_spatial()
css <-
HTML(paste0("<link rel='stylesheet' type='text/css' ",
"href='https://demos.creative-tim.com/",
"material-dashboard/assets/css/",
"material-dashboard.min.css?v=3.2.0'>"))
# Define the UI
ui <- page_sidebar(
fillable = FALSE, # do not squeeze to vertical screen space
tags$head(css),
titlePanel("Demo App"),
shinybusy::add_busy_spinner(),
markdown("
Select a desired area with the draw tools on the map, using the search bar if desired.
Then hit **Set Area of Interest** to select.
Then, enter your query in the text box below the map to count occurrences of your specified taxonomic group.
Use the airplane button to send your query. The computation may take a few minutes depending on the size and scale of
the search.
"),
p("
Scroll to zoom, ctrl+click to pitch and rotate. Hitting the area button with no selection to include the entire map.
"),
layout_columns(
card(maplibreOutput("map")),
div(actionButton("get_features", "Set Area Of Interest", icon = icon("object-group"),
class = "btn-primary align-bottom")),
col_widths = c(11,1)
),
card(
layout_columns(
textInput("chat",
label = NULL,
"show all bird occurrences at zoom level 6",
width = "100%"),
div(
actionButton("user_msg", "", icon = icon("paper-plane"),
class = "btn-primary btn-sm align-bottom"),
class = "align-text-bottom"),
col_widths = c(11, 1),
fill = FALSE
),
),
textOutput("agent"),
sidebar = sidebar(
card(fill = TRUE,
card_header("Selected area:"),
verbatimTextOutput("feature_output")
),
selectInput(
"select",
"Select an LLM:",
list("LLama3" = "llama3",
#"OLMO2 (AllenAI)" = "olmo",
"Gorilla (UC Berkeley)" = "gorilla"
)
),
card(fill = TRUE,
card_header(fa("robot"), textOutput("model", inline = TRUE)),
accordion(
open = TRUE,
accordion_panel(
HTML("<span, class='text-info'>Show SQL query</span>"),
icon = fa("terminal"),
verbatimTextOutput("sql_code")
),
accordion_panel(
title = HTML("<span, class='text-info'>Explain query</span>"),
icon = fa("user", prefer_type = "solid"),
textOutput("explanation")
)
)
),
card(
card_header(bs_icon("github"), "Source code:"),
a(href = "https://github.com/boettiger-lab/biodiversity-justice",
"https://github.com/boettiger-lab/biodiversity-justice"))
),
theme = bs_theme(version = "5")
)
duckdb_secrets(Sys.getenv("MINIO_KEY"),
Sys.getenv("MINIO_SECRET"),
"minio.carlboettiger.info")
gbif <- open_dataset("s3://public-gbif/2024-10-01", tblname = "gbif")
# Define the server
server <- function(input, output, session) {
output$map <- renderMaplibre({
m <- maplibre(center = c(-110, 38), zoom = 2, pitch = 0, maxZoom=9) |>
add_draw_control() |>
add_geocoder_control()
m
})
observeEvent(input$get_features, {
bounds <- ""
aoi_info <- NULL
drawn_features <- get_drawn_features(mapboxgl_proxy("map"))
if(nrow(drawn_features) > 0) {
bounds <- st_bbox(drawn_features)
# print(bounds)
output$feature_output <- renderPrint({
print(bounds)
})
attach(as.list(bounds))
gbif |>
dplyr::filter(between(decimallatitude, ymin, ymax),
between(decimallongitude, xmin, xmax)) |>
as_view("gbif_aoi")
}
observeEvent(input$user_msg, {
system_prompt = create_prompt(additional_instructions =
"Note that the columns h1, h2, h3, through h11 contains a geohash representing a H3 hexagon index.
Higher numbers indicate higher zoom resolution (smaller hexes)
Always aggregate results to count the number of rows matching
the query to the desired hexagon. Always name the count column 'count'.
Remember to group by hexagon level to aggregate!
Always rename the chosen hexagon column as 'h3id' in your final answer.
Always use table notation like 'gbif.order' to specify column names.
Be sure to generate fully valid SQL. Check your SQL for possible errors.
Always use the table 'gbif_aoi' rather than 'gbif' table if both are present.
IMPORTANT: return raw JSON only, do not decorate your reply with markdown code syntax.
")
agent <- ellmer::chat_vllm(
base_url = "https://llm.cirrus.carlboettiger.info/v1/",
model = "kosbu/Llama-3.3-70B-Instruct-AWQ",
api_key = Sys.getenv("CIRRUS_LLM_KEY"),
system_prompt = system_prompt,
api_args = list(temperature = 0)
)
print("Agent thinking...")
stream <- agent$chat(input$chat)
# Parse response
response <- jsonlite::fromJSON(stream)
if ("query" %in% names(response)) {
output$sql_code <- renderText(str_wrap(response$query, width = 60))
output$explanation <- renderText(response$explanation)
# clear agent memory
agent$set_turns(NULL)
} else {
output$agent <- renderText(response$agent)
}
# cache the query
query_id <- digest::digest(paste(response$query, bounds, collapse=""))
data_url <- glue::glue("https://minio.carlboettiger.info/public-data/cache/{query_id}.h3j")
# use tempfile. we could use database tempdir
cache_parquet <- tempfile(glue("{query_id}"), fileext = ".parquet")
# compute if not yet in chache
status <- httr::status_code(httr::HEAD(data_url))
if(status == 404) {
print("Computing...")
time <- bench::bench_time({
agent_query(stream) |>
mutate(log_count = log(count)) |>
write_dataset(cache_parquet)
})
print(time)
}
cached_data <- open_dataset(cache_parquet)
# so we can scale color and height to max value
biggest <- cached_data |> summarise(max = max(log_count)) |> pull(max) |> first()
# so we can zoom to the selected data (choose random point)
aoi_info <- cached_data |>
head(1) |>
mutate(zoom = h3_get_resolution(h3id),
lat = h3_cell_to_lat(h3id),
lng = h3_cell_to_lng(h3id)) |>
collect()
# draw on map
h3j <- glue("s3://public-data/cache/{query_id}.h3j")
cached_data |> to_h3j(h3j)
# override previous map with drawn map
# we should use set_h3j_source and set_layer on maplibre_proxy instead.
output$map <- renderMaplibre({
m <- maplibre(center=c(-110, 38), zoom = 1, pitch = 0, maxZoom = 11) |>
add_h3j_source("h3j_source",
url = data_url) |>
add_fill_extrusion_layer(
id = "h3j_layer",
source = "h3j_source",
tooltip = "count",
fill_extrusion_color = interpolate(
column = "log_count",
values = c(0, biggest),
stops = c("#430254", "#f83c70")
),
fill_extrusion_height = list(
"interpolate",
list("linear"),
list("zoom"),
0, 0, biggest,
list("*", 10000, list("get", "log_count"))
),
fill_extrusion_opacity = 0.7
)
if (!is.null(aoi_info)) {
m <- m |> fly_to(c(aoi_info$lng, aoi_info$lat), zoom = (aoi_info$zoom - 1))
}
m
}) # close renderMaplibre
}) # close observeEvent->get_features
}) # close observeEvent->user_msg
}
# Run the app
shinyApp(ui = ui, server = server) |