import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Determine device device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "thrishala/mental_health_chatbot" try: # Load model with appropriate settings model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, max_memory={0: "15GiB"} if torch.cuda.is_available() else None, offload_folder="offload", ).eval() tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token tokenizer.model_max_length = 4096 # Set to model's actual context length except Exception as e: print(f"Error loading model: {e}") exit() def generate_text_streaming(prompt, max_new_tokens=128): inputs = tokenizer( prompt, return_tensors="pt", truncation=True, max_length=4096 # Match model's context length ).to(model.device) generated_tokens = [] with torch.no_grad(): for _ in range(max_new_tokens): outputs = model.generate( **inputs, max_new_tokens=1, do_sample=False, eos_token_id=tokenizer.eos_token_id, return_dict_in_generate=True ) new_token = outputs.sequences[0, -1] generated_tokens.append(new_token) # Update inputs for next iteration inputs = { "input_ids": torch.cat([inputs["input_ids"], new_token.unsqueeze(0).unsqueeze(0)], dim=-1), "attention_mask": torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=model.device)], dim=-1) } # Decode the accumulated tokens current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) yield current_text # Yield the full text so far if new_token == tokenizer.eos_token_id: break def respond(message, history, system_message, max_tokens): # Build prompt with full history prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" # Keep track of the full response full_response = "" try: for token_chunk in generate_text_streaming(prompt, max_tokens): # Update the full response and yield incremental changes full_response = token_chunk yield full_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()